ER/WM&I DDT

Source/Driver: (Name & Number from ISP, IAG milestone, Mgmt. Action, Corres. Control, etc.)	Closure #: (Outgoing Control #, if applicable)	•
J. P. Schmuck Originator Name	G. DiGregorio QA Approval	AUTOR Law Contractor Manager(s)
L. Butler Kaiser-Hill Program Manager(s)		A. D. Rodgers Kaiser-Hill Director

Document Subject:

TRANSMITTAL OF NOTIFICATION TO EPA OF A MODIFICATION TO THE OU7 PASSIVE SEEP INTERCEPTION AND TREATMENT SYSTEM IM/IRA - JEL-110-98

KH-00003NS1A

June 18, 1998

Discussion and/or Comments:

Enclosed please find three (2) copies of a notification to EPA of a modification to the OU7 Passive Seep Interception and Treatment System IM/IRA. The modification involves using passive air stripping in lieu of granulated activated carbon. The modification will provide waste minimization and cost savings.

Please review the modification and forward copies to DOE. If you have any questions or comments please contact John Schmuck at extension 4092.

Enclosures:

As Stated

JPS/aw

CC:

J. Schmuck ER Records

6/23/98

Tim Rehder
United States Environmental Protection Agency
Rocky Flats Project
999 18th Street, Suite 500
Denver, CO 80202-2466

NOTIFICATION OF MINOR MODIFICATION TO THE MODIFIED PROPOSED ACTION MEMORANDUM FOR THE PASSIVE SEEP INTERCEPTION AND TREATMENT OPERABLE UNIT 7, REV. 1, MARCH 1996

By this correspondence, the U.S. Department of Energy/Rocky Flats Field Office (DOE-RFFO) is notifying the Region VIII Environmental Protection Agency of a minor modification to the Proposed Action Memorandum for the Passive Seep Interception and Treatment Operable Unit 7, Revision 1, March 1996, pursuant to ¶25as. and ¶126 of the Rocky Flats Cleanup Agreement (RFCA). The Passive Seep Interception and Treatment System (PSITS) presently uses granulated activated carbon (GAC) to treat the volatile organic compounds (VOCs) that are present in the seep at levels slightly above stream standards. DOE is proposing to substitute passive air stripping for the GAC. The passive air stripping is better suited to treating the VOCs of concern.

The minor modification is supported by recent water sampling that was performed to evaluate the treatment system. A minor modification is appropriate because the change in operation of the treatment system will achieve substantially the same level of performance, will not cause the system to exceed an effluent limit and is not a significant departure from the original decision document (id.).

DOE has included three documents in support of this minor modification request. The first attachment, entitled Evaluation of Water Treatment Activities at OU7, documents the results of the Plan for Evaluating Water Treatment Activities at OU7. The approved evaluation plan was dated May 28, 1997.

The second attachment is entitled the Revised Present Landfill Passive Seep Interception and Treatment System Design Change - Modification to the Proposed Action Memorandum. This attachment describes the proposed change to the design of the PSITS.

The third attachment is entitled the Revised Present Landfill Passive Seep Interception and Treatment System Operational Framework - Modification to the Proposed Action Memorandum (Revised Operational Framework). The Revised Operational Framework is intended to supersede the existing PAM and the existing Operational Framework. In this way the PSITS Operator will have a single document that provides a clear and complete understanding of active compliance obligations.

Paragraph 126 of the Rocky Flats Cleanup Agreement requires that DOE give the Lead Regulatory Agency seven days notice prior to implementing any minor modification. Although RFCA does not require written approval, DOE will contact you in several days to answer questions or address concerns you may have about the proposal.

We look forward to discussing your thoughts on the proposed modification. If you have questions or comments please contact me at (303) 966-4839, or Norma Castaneda of my staff at (303) 966-4226..

Steve Slaten Manager, Regulatory Liaison

Enclosures: As Stated

cc: Carl Spreng, CDPHE

ATTACHMENT 1

Evaluation of Water Treatment Activities at the Passive Seep Interception and Treatment System

Objectives

The first objective was to evaluate the current volatile organic compound (VOC) and semivolatile organic compound (SVOC) contaminant levels in the influent to the treatment system. The second objective was to evaluate the carbon changeout frequency required to meet the concentration limits (applicable or relevant and appropriate requirements, or "ARARs") applicable to the discharge.

Conclusion

Two constituents, benzene and vinyl chloride, were detected in the influent at levels slightly above the current stream standards-based ARARs for the OU7 Passive Seep Interception and Treatment System (PSITS).

Installation of new GAC will be required on a monthly basis to consistently attain ARARs. The frequency of GAC changeout is due to the fact that neither benzene or vinyl chloride are amenable to treatment using granular activated carbon. The two constituents in question are better suited to air stripping.

Background

The PSITS is a passive treatment system which utilizes GAC to reduce the concentration of VOCs and SVOCs in the seep that originally emanated from the toe of the Present Landfill. The PSITS is comprised of:

- a seep intercept system
- a settling basin to remove suspended solids
- a bag filtration system consisting of two 25 micron bag filters operated in parallel to remove residual suspended solids
- two 55-gallon drums of GAC piped in series.

The PSITS consists of perforated pipe laid in a gravel bed. Seep water collects in the perforated pipe and is piped to a pre-cast concrete basin which allows suspended solids to settle and serves to equalize the head on the system. The settling basin was equipped with a bypass line which allows the influent, or a portion thereof, to bypass the treatment system during routine maintenance or when the flow rate of the seep water is greater than the maximum system design flow rate. A pipe discharges from the settling basin into bag filters which remove particles greater than 25 microns from the influent.

After filtration, the seep water flows through two 55-gallon drums of GAC. The GAC removes select VOCs and SVOCs. The GAC drums are located in a below-ground carbon steel tank which serves as a secondary containment for the system. When two GAC drums are in use they are operated in series in lead and polish positions. When breakthrough occurs from the lead drum, the polish drum is moved to the lead position and a new GAC drum is placed in the polish position. The effluent from the polish position (i.e. the treatment system effluent) is discharged by gravity to the East Landfill Pond.

Current Operations

With one exception, the PSITS is currently operated in accordance with the Operational Framework and associated Sampling and Analysis Plan (PSITS SAP) submitted by DOE to EPA and CDPHE on November 25, 1996. The Operational Framework was intended to clarify and document issues associated with the management and operation of the PSITS. The one exception is that GAC is currently being changed out on a

monthly basis. The monthly changeout is based upon the results of this evaluation. The monthly changeout will continue until this PAM modification is approved.

Summary of the Technical Approach to the Evaluation

Sampling and analysis for VOCs and SVOCs was performed in accordance with the PSITS SAP. On day zero of the evaluation, two new 55-gallon drums of GAC were put on line, in series. Samples were taken from four locations- in the influent to the treatment system; after the lead GAC unit; in the treatment system effluent after the polish unit; and in the landfill pond.

Each location was sampled after one week, one month, and two months. After the two month sampling event, the lead GAC was taken off line and the polish GAC was moved into the lead position. A fresh drum of GAC was then placed in the polish position. That type of rotation reflected the ongoing management practice. When the two month rotation was completed, each location was again sampled after one week, one month and two months.

The exact day of sampling was not critical. As a result, sampling was coordinated with other maintenance activities. Regardless, the sampling schedules for the two study cycles were approximately equivalent. An additional sampling was performed on the second cycle to confirm the data obtained from the last scheduled sampling event (the 126th day). VOCs and SVOCs were analyzed by gas chromatography/mass spectrophotometry in accordance with SW-846 methods 8260 and 8270, respectively.

The actual time line for the sampling was as follows:

Event	Event <u>Cycle</u>	Sample Date	Required <u>Analyses</u>
Install two new GAC drums	Day 0	08/04/97	None
Check System	Day 9	08/13/97	VOC, SVOC,TB*
Check System	Day 35	09/08/97	VOC, SVOC
Check System	Day 65	10/08/97	VOC, SVOC
Start second cycle	Day 65	10/08/97	None
Check System	Day 72	10/15/97	VOC, SVOC
Check System	Day 98	11/10/97	VOC, SVOC
Check System	Day 126	12/08/97	VOC, SVOC
Verify previous data	N/A	01/15/98	VOC. SVOC

^{*}Trip Blank for VOC

<u>Data Presentation</u>

The results of the sampling are presented in the four following figures. The figures present only the analytes detected by EPA Methods 8260 and 8270. In addition, exceedances of RFCA Action Levels (stream standards-based ARARs) are highlighted and the total mass of contaminants over the five month evaluation period is summed.

Three types of additional data are presented in Appendix 1, 2 and 3. Appendix 1 includes both the samples taken as part of the evaluation (ie. 8/13/97 - 1/15/98), and other recent samples in the RFETS Soil and Water Database that are relevant to the evaluation. In addition, the data in Appendix 1 includes all tentatively identified compounds detected during the evaluation.

Appendix 2 contains original data tables from the *Modified Proposed Action Memorandum Passive Seep Interception and Treatment Operable Unit 7, Revision 1,*March 1996. These original data tables represent untreated water samples taken from the seep and have been included for comparison to the new seep data collected for the

Figure 1 OU7 SW00396 Landfill Treatment System Influent RFCA

	RFCA								-	
	Action								lotal	
	Level	Concentration	on						Mass (g)	
Volatiles (ug/L)		13-Aug-97	8-Sep-97	8-Oct-97	15-Oct-97	15-Oct-97 10-Nov-97 8-Dec-97		15-Jan-98	8/97 through 1/98	
1,1-Dichloroethane	1000	4.00	3.90	5.40	4.81		5.60	6.90	13.19	
1,2-Dichlorobenzene	620			0.44			0.47	0.54	0.61	
1,4-Dichlorobenzene	75			0.56			99.0	0.65	0.79	
Acetone					8.47				2.29	
Benzene	-	1.20	1.10	1.50			1.70	2.10	3.52	
Chlorobenzene	100			0.29				0.54	0.33	
Chloroethane		13.00	12.00	15.00		15.00	18.00	16.00	42.05	
cis-1,2-Dichloroethene	70						0.42	0.52	0.46	
Ethylbenzene	089	6.20	6.30	9.70	8.32	12.00	9.40	12.00	28.25	
Napthalene	620	13.00	12.00	30.00	22.90	16.00	37.00	41.00	74.26	
Toluene	1000			1.30	1.35		1.40	1.10	1.95	
Trichloroethene	2.7			0.55			0.70	0.91	0.93	
Vinyl chloride	2	1.70		2.20	1.84		2.50		3.28	
Xylene (total)	10000	13.00	14.00	3.00	1.47	3.60	3.20	2.80	20.79	
									Total Volatiles	192.72
SemiVolatiles										
Acenaphthene	520	1.10		2.10			4.00	4.90	5.51	
bis (2-Ethylhexyl)Phthalate	10		1.60				3.00	1.30	3.03	
Butylbenzylphthalate	300									
Di-n-Butylphthalate	10									
Diethylphthalate	23000									
Ethylbenzene	680			5.90					1.60	
Fluorene	1300			1.80			2.80	3.00	3.33	
Naphthalene	620	1.80	1.30	12.00	6.28		16.00		14.75	
Phenanthrene	10			2.80			4.20	4.00	4.78	
Phenol	2560									
									Total SemiVolatiles	32.98
Average Monthly Flow (gal/min)	(1	3.20	3.40	3.20	3.20	3.10	3.00	2.80	•	
Average Monthly Flow (I/min)		12.11	12.87	12.11	12.11	11.73	11.36	10.60		

Average Monthly Flow (Wmin)

NOTE: ONLY ANALYTES DETECTED BY EPA METHODS 8260 AND 8270 WHICH HAVE RFCA LEVELS ARE LISTED NOTE: RFCA ACTION LEVEL EXCEEDANCES ARE SHADED

NOTE: RFCA ACTION LEVEL EXCEEDANCES ARE SHADED

NOTE: NO VALUES SHOWN INDICATE BELOW DETECTION LIMIT

Figure 2
OU7 SW00296 Landfill Treatment Lead GAC Effluent
RFCA
Action

GAC CHANGE

			1					
	revel .	Concentration	uo	,		,		
Volatiles (ug/L)		13-Aug-97	8-Sep-97	8-Oct-97	15-Oct-97	15-Oct-97 10-Nov-97	8-Dec-97	15-Jan-98
1,1-Dichloroethane	1000		2.70	4.40	2.99	5.00	6.80	7.70
1,2-Dichlorobenzene	620						0.46	
1,4-Dichlorobenzene	75						0.60	
Acetone					6.25			
Benzene	_			0.59			1:90	.1.10
Chlorobenzene	100							
Chloroethane		4.40	9.60	16.00		17.00	18.00	19.00
cis-1,2-Dichloroethene	70						0.50	0.38
Ethylbenzene	089			1.40			11.00	3.70
Napthalene	620		1.40	1.00			36.00	1.10
Toluene	1000			0.23			1.50	0.58
Trichloroethene	2.7						0.87	0.43
Vinyl chloride	2		W13551 W. J	2.20		700	2.80	3.00
Xylene (total)	10000			1.20			3.70	0.76
					*			
SemiVolatiles								
Acenaphthene	520				detail.		4.10	
bis (2-Ethylhexyl)Phthalate	10						3.70	
Butylbenzylphthalate	300							
Di-n-Butylphthalate	10							
Diethylphthalate	23000							
Ethylbenzene	089							
Fluorene	1300							
Naphthalene	620						19.00	
Phenanthrene	10						4.60	
Phenol	2560			-				
(cicc)		2 20	3.40	3 20	3 20	410	00	08.0
Average Monthly Flow (gal/min) Average Monthly Flow (I/min)		3.20 12.11	3.40 12.87	3.20	3.20 12.11	3.10 11.73	3.00 11.36	10.60

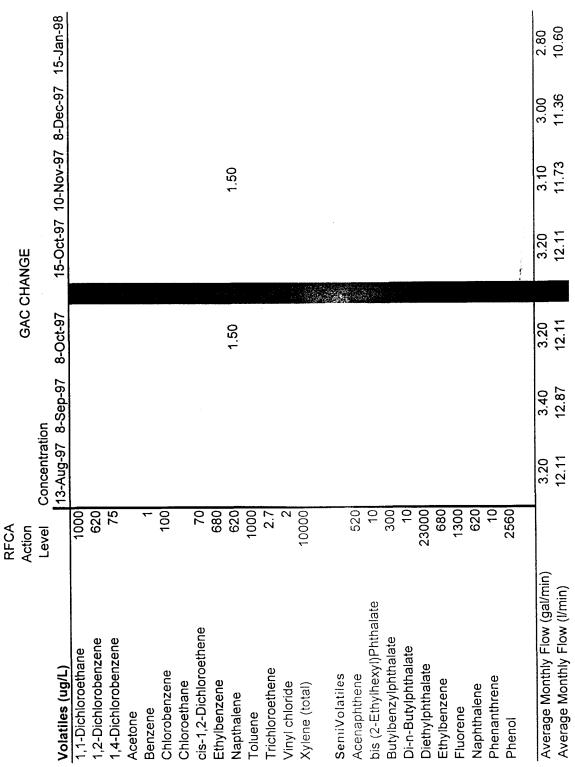

NOTE: ONLY ANALYTES DETECTED BY EPA METHODS 8260 AND 8270 WHICH HAVE RFCA LEVELS ARE LISTED NOTE: RFCA ACTION LEVEL EXCEEDANCES ARE SHADED NOTE: NO VALUES SHOWN INDICATE BELOW DETECTION LIMIT

Figure 3 OU7 SW00196 Landfill Treatment System Effluent RFCA

																		39.98												4.17	
	Total	Mass (g)	8/97 through 1/98	4.96	00.0	00.00	1.56	00.00	0.00	27.61	0.00	0.00	3.78	00:00	0.00	2.07	0.00	Total Volatiles		0.00	1.88	0.00	2.29	0.00	0.00	0.00	0.00	0.00	0.00	Total SemiVolatiles	
			15-Jan-98	5.60						17.00													3.20								2.80 10.60
			8-Dec-97	3.50						18.00						2.80					3.70										3.00 11.36
			15-Oct-97 10-Nov-97																												3.10 11.73
	ANGE		15-Oct-97				5.76																								3.20 12.11
	GAC CHANGE		8-Oct-97	2.00		-				16.00			14.00			2.40						e 5									3.20 12.11
		ion	8-Sep-97							11.00													1.40								3.40 12.87
		Concentration	13-Aug-97																												3.20 12.11
RFCA	Action	Level		1000	620	75		~	100		70	089	620	1000	2.7	2	10000		·	520	10	300	10	23000	680	1300	620	10	2560		
			Volatiles (ug/L)	1,1-Dichloroethane	1,2-Dichlorobenzene	1,4-Dichlorobenzene	Acetone	Benzene	Chlorobenzene	Chloroethane	cis-1,2-Dichloroethene	Ethylbenzene	Napthalene	Toluene	Trichloroethene	Vinyl chloride	Xylene (total)		SemiVolatiles	Acenaphthene	bis (2-Ethylhexyl)Phthalate	Butylbenzylphthalate	Di-n-Butylphthalate	Diethylphthalate	Ethylbenzene	Fluorene	Naphthalene	Phenanthrene	Phenol		Average Monthly Flow (gal/min) Average Monthly Flow (I/min)

NOTE: ONLY ANALYTES DETECTED BY EPA METHODS 8260 AND 8270 WHICH HAVE RFCA LEVELS ARE LISTED NOTE: RFCA ACTION LEVEL EXCEEDANCES ARE SHADED NOTE: NO VALUES SHOWN INDICATE BELOW DETECTION LIMIT

Figure 4 OU7 SW098 Landfill Pond

NOTE: ONLY ANALYTES DETECTED BY EPA METHODS 8260 AND 8270 WHICH HAVE RFCA LEVELS ARE LISTED NOTE: RFCA ACTION LEVEL EXCEEDANCES ARE SHADED

NOTE: NO VALUES SHOWN INDICATE BELOW DETECTION LIMIT

evaluation. The original seep data collected for the March 1996 PAM are consistent with the new seep data collected during the evaluation - in terms of both the constituents identified and the overall concentrations.

Appendix 3 contains original data tables from the Draft Phase 1 IM/IRA *Decision Document and Closure Plan for Operable Unit 7 Present Landfill*, March 1996. These original data tables represent pond water samples and have been included for comparison to the new pond water data collected for the evaluation. The original pond water data collected for the March 1996 IM/IRA are consistent with the new pond water data collected during the evaluation - in terms of both the constituents identified and the overall concentrations.

Discussion of Results

Influent Quality

Two VOC constituents are present in the influent at concentrations slightly above the stream standards-based ARARs. The mass of contamination above stream standards, on a yearly basis, is less than 10 grams. It should also be noted that none of the other VOC or SVOC constituents detected approached the ARAR values. (See Figure 1).

Although not a focus of the investigation, it is important to recognize that the maximum metal concentrations detected in the seep (see Appendix 2) are consistent with the reported background values for seeps at RFETS. (See Appendix 4).

Carbon Changeout Frequency

Figure 2 shows that vinyl chloride and benzene break through the lead GAC at four to eight weeks. In fact, at eight weeks, vinyl chloride had broken through both the lead and the polish GAC units and was present in the effluent at levels exceeding ARARs. (See Figure 3). To be confident that ARARs are attained, carbon changeout should be conducted monthly.

This conclusion is supported in the literature. The chart in Appendix 5 illustrates the relative effectiveness of different treatment technologies for specific organic constituents. Both benzene and vinyl chloride appear in the upper right hand corner of the chart and are considered "poor adsorber but good stripper".

Landfill Pond Water Quality

Figure 4 is consistent with the results tabulated in Appendix 3. Only very limited contamination has been detected. None of the VOC or SVOC constituents approach the stream standards-based ARARs.

Appendix 1

Recent Passive Seep Interception Treatment System Data in RFETS Soil and Water Database

Treatment System Influent

ND=Sample Below Detection Limit NT=Not Sampled

SemiVolatiles	5/29/96	7/16/96	9/13/96	10/30/96	11/20/97	1/20/97	2/19/97	4/23/97	6/16/97	8/13/97	9/8/97	10/8/97	10/15/97	11/10/97	12/8/97	1/15/98
1-Methylnaphthalene	Q	F	ΙN	N	Q	Q	TN	F	Q	QN	Q	2	2	Q	Q	2
2(3H)-Benzothalazone	9	Ä	Z	낟	2	2	Z	Z	2	9	ᄝ	유	Q	2	ᄝ	2
2,4-Imidazolidinedione,1-(hydrox	2	Q	Q	2	Q	2	용	2	ᄝ	9	9	용	Q	5.9	ᄝ	용
2-bitoxyethanol	99	K	K	F	9	2	Z	¥	ᄝ	2	ᄝ	ᄝ	Q	2	Q	9
2-Fluoro-1-propene	Q.	Ł	Ż	۲	Q	2	Z	¥	ᄝ	9.9	ᄝ	2	皇	Q	2	ᄝ
2-Methylnaphthalene	2	F	ĸ	Ä	2	2	¥	Z	ᄝ	2	오	2	2	Q	Q	2
2-Methyloxy-3-methybutane	2	F	F	Ϋ́	Q	2	¥	Ä	ᄝ	9	ᄝ	S	2	Q	2	ᄝ
2-Proenoicacid, 2-methyl-ethylene	윤	¥	F	Z	9	2	Z	Ž	ᄝ	2	ᄝ	5.9	2	2	용	웊
3,3-dimethyl-1-Butene	2	¥	F	F	2	2	¥	Z	오	2	9	8.6	Q	2	g	읖
3-phenyl-5(4H)-isoxalone	Q N	Ä	F	Ę	Q	2	¥	Ę	운	2	ᄝ	용	2	Q	용	2
4,4-(1-methylethylidene)bisphenol	Q	Ä	Ā	Ę	Q	2	Ż	Ż	욷	ð	2	Q	2	2	Q	Q
4,4-(Methylethylidene)Biphenol	Q	Ł	F	Ä	Q	오	¥	K	2	9	ջ	呈	呈	Ω	Q	ᄝ
4-isothiazolecarboxamide	Q	ĸ	Z	눋	2	2	¥	¥	ᄋ	2	S	2	S	Q	9	ջ
Acenaphthene	Q	Ľ	¥	۲	Q	2	¥	Z	ջ	2	ᄝ	g	읒	Q	2	ᄝ
Alpha, alpha 4-trimethy cyclohexane	Q	۲N	Ä	Ä	2	2	Ä	Ę	웆	Q	ջ	Q	2	<u>Q</u>	Q	Q
Benzocycloheptatriene	9	F	¥	Ä	2	Q	Z	Ę	2	오	2	Q	Q	2	Q	오
Benzoicacid	28	۲	¥	Ä	Q	2	¥	Ä	2	임	2	g	읖	2	2	2
bis(2-Ethylhexy)Phthalate	5	۲	Ż	۲	Q.	6.4	¥	Z	9	유	2	Q	문	<u>Q</u>	3.7	ᄝ
Butylbenzophthalate	4	Ϋ́	۲	۲	Q	2	Ä	F	9	용	9	S	문	<u>Q</u>	2	용
Di-n-buthylphthalate	9	LΝ	K	۲N	Q	잎	¥	¥	ᄝ	용	4.	Q	문	<u>Q</u>	9	3.2
Dibenzofuran	9	F	¥	۲	9	Q	F	K	9	용	Q	Q	Q	Q	2	2
Diethylphthalate	ဗ	ΙN	Z	۲	Q	S	Ä	Ż	2	윉	ջ	2	ᄝ	<u>Q</u>	9	9
Ethylbenzene	Q	۲	ĸ	Z	Q	2	¥	¥	2	Q	ջ	2	2	<u>Q</u>	9	皇
Fluorene	Q	Ľ	Ϋ́	۲	Q Q	2	ž	۲	2	Q	ᄝ	Q	2	2	2	Q
Hydroxy MethylesterAcetic acid	Q N	F	Ϋ́	Ϋ́	Q	2	¥	ž	2	Q	9	Q	문	<u>Q</u>	<u>Q</u>	Q
Napthalene	7	Z	¥	۲	Q	Q	Z	Ä	2	ᄝ	2	Q	2	Q	9	2
Phenanthrene	Q	۲	Ϋ́	۲	9	2	۲	Ä	2	Q	Q	Q	2	Q	Q	Q
Phenol	S	¥	Ä	Ľ	2	2	Ę	۲	ᄝ	Q	ᄝ	Q N	Q	Q	Q	Q
Triethyleste phosphoric Acid	윉	¥	¥	Z	9	Q	F	F	2	2	2	2	Q	Q	2	2
Triethylphosphate	Q	Ę	Ż	Ä	Q Q	Q	Z	Z	Q	9	2	Q	<u>Q</u>	Q N	Q	2

ND=Sample Below Detection Limit NT=Not Sampled

SW00196 Treatment System Effluent

Sampling History at OU7 Location SW00196 Landfill Treatment System Effluent

1/15/98	Q	5.6	용	Q Z	Q	2	9	Q	Q	Q	Q	9	2	Q	Q	<u>Q</u>	Q Z	Q Z	Q N	<u>Q</u>	Q Z	S	17	Q	2	4.8	o Z	Q	Q	2	Q	Q Q	Q	Q	Q	S	Q	Q) :
12/8/97	2	3.5	9	2	Q	Q	2	ᄝ	오	2	오	Q	용	2	2	Ω Z	Q	S	ᄝ	Q	S	2	18	Q	S	5.78	皇	9	2	Q	Q	2	Q	QN	Q	Q	2.8	2	<u>.</u>
11/10/97	Q	5.6	Q	Q	2.2	잎	잎	Q	Q	Q	욮	잎	Q	Q	Q	Q	Q N	Q.	Q	8.	Q	Q	15	31	2	Q	7.2	12	Q	4.1	Q.	Q	Q N	16	£.3	Q	2	9))
10/15/97	QN	4.81	皇	Q	1.93	2	Q	ᄝ	2	ᄝ	물	2	읖	2	2	<u>2</u>	Q.	2	8.47	Q	2	2	오	2	잎	1.48	旲	8.32	ᄝ	Q	3.31	2	ΩN	22.9	1.35	Q	1.84	1.47	ř.
10/8/97	3.4	5.4	2	1.6	1.8	0.44	0.31	0.56	9.	[-	Ţ	-	4.5	2.2	2		0.65	1.1	2	1,5	0.29	Q	2.2	Q	Q	Q	11	9.7	웊	- -	2	0.27	0.31	30	6.	0.55	1 84	! (*	ว
9/8/97	QN	3.9	9	Q	Q	2	2	ᄝ	잁	잁	9	2	2	2	ᄝ	õ	Q	呈	Q	1.1	Q	임	12	2	Q	Q	9.1	6.3	2	QN	Q	용	Q	12	Q	C	Ž	1 7	<u>‡</u>
8/13/97	Q	4	2	Q	0.95	2	ᄝ	2	S	문	ջ	S	2	2	2	Q	Q	9	Q	1.2	2	Q	13	S	9	5.	3.8	6.2	용	Q	Q.	2	Q	13	Ç	Z		: 0	2
6/16/97	QN	4.2	2	Q	Ş	2	2	2	S	g	9	S	2	욮	ᄝ	Q	Q	Ş	2	0.33	2	2	19	2	2	9	2	0.58	2	Q	0.45	2	Q	Q	S	Ş	2 2) (Š
4/23/97	L	Ż	Ę	Ž	Ę	ż	¥	¥	Ż	¥	Ż	¥	Z	Z	¥	Z	Z	Z	Ä	N	Z	¥	Z	¥	F	Ä	Z	Z	Z	Ł	¥	Z	Z	Z	Ż	<u> </u>	- H	<u> </u>	ž
2/19/97	LN	Ž	Ż	Ž	Ž	<u> </u>	Ż	Z	Ż	Ę	Ż	Ż	Z	Z	¥	Z	Ż	Z	Z	¥	K	¥	Ż	Z	Ż	Ż	Ę	Ę	Z	Ż	Ż	Ę	Ż	, <u>+</u>	<u> </u>	5 5	- <u>+</u>	- ! - !	z
1/20/97	CZ	; ; ;		: C	2 2	2 5	2	2	Ş	£	S	2	2	2	2	Q	S	Ş	0.67	Q	2	Ş	7.4	S	S	S	2	2 5	S	Ş	Ş	2 5	2	2 2	2 2	2 2	2 4	2 ;	0.25
11/20/97	CN	2	2 5	2	2 2	2 5	2 5	2 5	2 5	2 2	2 2	2	呈	2	2	S	Ş	Ş	2	C	2	Ş	<u></u> 8	Ş	2	Ş	2 5	2 5	Ę	2) «	2 2	2 2	2 2	2 0	n (<u>Ş</u> ,	N !	2
10/30/96	FZ	<u> </u>	2 2	: h	Ž	2 2	Ż	. F	<u> </u>	ž	<u> </u>	Ż	Ę	Z	Z	Ż	Ż	: 	Ę	Ż	Ż	: 	Ż	Ž	Ž	Ę	2 2	5 5	<u> </u>	: <u> </u>	5	<u> </u>	2 2	<u> </u>	<u> </u>	<u> </u>	Z	Z	Z
9/13/96												2 5		Ş	2	2	2	2 2	2 5	2	2 5	2 2	<u>.</u> ٤	3 5	2 2	2 5	2 2	2 2	2 5	2 2	2 5	2 2	2 2	2 2	2 2	2 :	o '	7	Q Z
7/16/96		<u>}</u> c	» <u>2</u>	2 2	2 2	2 2	2 5	2 5	2 2	2 2	2 2	2 2	2 5	2 2	<u>;</u> ~	, <u>2</u>	2 2	2 5	2 2	2 2	2 5	2 5	5 %	3 2	<u></u>	۷ 5	2 2	€ ,	۰ <u>۲</u>	2 2	<u>}</u> +	- 5	2 2	2 2	2 :	2 !	2	သ	2
A/29/96	201270	2 2	Ž ,	۷ :	2 :	2 5	2 2	2 5	2 2	2 2	2 2	2 2	2 2	2 5	<u> </u>		2 2	2 2	5 5	7 6	2 2	€ 2	- <u>-</u>	<u> </u>	מ ב	€ -	n 5	2 5	9 6	: C	Ş (7 5	2 2	2 :	2	0.2	Q	Q	2
	Volatile Organics	(1-methyi-1-propenyi)-(E)benzene	1,1-Dichloroethane	1,1-Dichloroethene	1,2,3,4-tetrahydro-1-methylnaphthalen	1,2,4-Trimethylbenzene	1,2-Dichlorobenzene	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	1-ethly-2,3-dimethylbenzene	1-Ethyle-2-methylbenzene	1-Methyl-3-(1-methyethyl)benzene	1-Metnyletnylbenzene	2,3-dinydro-1,z-dimetriyi-1n-indene	Z,3-Dinydroindene	Z-butanone	2-ethenyi-1,3,4-trimetnyiberizerie	4-isopropyitolune	4-Methylethylbenzene z-oxetriarione	Acetone	Benzene	Chlorobenzene	Chlorodiflouromethane	Chloroethane	Chloroflouromethane	Dichlorodifluoromethane	Dichlorofluoromethane	Dichlorofluoromethane	Ethylbenzene	Hexane	Isopropyibenzene	Methylene Chloride	n-Butylbenzene	n-Propylbenzene	Napththalene	Toluene	Trichloroethene	Vinyl Chloride	Xylene (Total)

ND=Sample Below Detection Limit NT=Not Sampled

SW00196 Treatment System Effluent

Sampling History at OU7 Location SW00196 Landfill Treatment System Effluent

SemiVolatiles	5/29/96	7/16/96	9/13/96	10/30/96	11/20/97	1/20/97	2/19/97	4/23/97	6/16/97	8/13/97	26/8/6	10/8/97	10/15/97	11/10/97	12/8/97	1/15/98
1-Methylnaphthalene	Q	ΕN	ĽΝ	۲N	Q	Q	N	ΙN	QN	QN	Q	Q	Q	Ω	QN	QN
2(3H)-Benzothalazone	S	Ž	Ä	¥	Q Z	9	Z	F	2	Q	2	2	2	ᄝ	Q	Q
2,4-Imidazolidinedione,1-(hydrox	Q Q	g	2	Q	9	2	2	9	2	2	2	9	S	5.9	2	NO ON
2-bitoxyethanol	99	Ä	۲	¥	Q	용	¥	¥	2	Q	2	2	2	ջ	2	Q
2-Fluoro-1-propene	Q	Z	۲	¥	Q	2	¥	¥	9	9.9	욷	ᄝ	2	2	Q	Q
2-Methylnaphthalene	7	Z	Ä	Z	Ω	2	F	¥	2	Ω	皇	ᄝ	2	용	2	Q
2-Methyloxy-3-methybutane	Q	Ä	Ä	F	Ω	9	눋	¥	2	Q	2	2	2	ᄝ	身	Q
2-Proenoicacid, 2-methyl-ethylene	Q	Ϋ́	Ä	Ł	Q	9	¥	Ä	웆	Q.	9	5.9	S	S	2	ND ND
3,3-dimethyl-1-Butene	Q	Z	K	F	2	9	Z	Ę	2	2	9	8.6	2	ᄝ	2	Q
3-phenyl-5(4H)-isoxalone	Q	K	Ä	F	9	9	Z	¥	2	9	Q	9	2	9	Q	Q
4,4-(1-methylethylidene)bisphenol	Q	۲	Ä	¥	Q	ᄝ	눋	¥	2	Q	2	읒	딮	ᄝ	9	Q
4,4-(Methylethylidene)Biphenol	Q	Ż	ĸ	낟	Q	9	z	¥	욷	Q	2	2	ᄝ	Q	9	Q
4-isothiazolecarboxamide	2	Z	Ŋ	۲	Q	9	¥	۲	용	Q	S	S	S	N N	Q.	QN
Acenaphthene	ΩN	Ż	Ä	ĸ	Q	용	¥	¥	皇	Q	2	ᄝ	ջ	ջ	2	Q
Alpha, alpha 4-trimethy cyclohexane	Q	N	ĸ	¥	Q	9	z	۲	ᄝ	Q	皇	ᄝ	2	Q	2	Q
Benzocycloheptatriene	Q	۲	Ł	¥	Q	皇	¥	¥	용	Q	2	웆	2	용	9	Q
Benzoicacid	28	Ł	Z	K	Q.	ᄝ	¥	×	욷	Q	2	ᄝ	오	R	2	Q
bis(2-Ethylhexy)Phthalate	S	N	۲	¥	Q	4 .9	z	۲	ᄝ	Š	Q	S	S	N Q	3.7	Q.
Butylbenzophthalate	4	۲	۲	¥	Q	ᄝ	¥	ĸ	ջ	Q.	2	2	2	Q	Q	Q
Di-n-buthylphthalate	9	Z	F	ĸ	2	ᄝ	님	¥	2	9	4.	皇	2	Q	2	3.2
Dibenzofuran	Q	Ϋ́	Z	¥	Q	욮	¥	¥	2	Q	2	ջ	R	Q	2	QN
Diethylphthalate	ღ	Z	Z	K	Q	2	¥	۲	ᄝ	2	2	ջ	9	ᄝ	2	Q
Ethylbenzene	Q	Ä	۲	۲	Q	2	Z	ĸ	Q	Ŋ	Ş	Q	Q.	QN N	QN	Q
Fluorene	Q	Z	F	Ä	õ	용	z	¥	2	Q	2	9	Q	۵	Q	Q
Hydroxy MethylesterAcetic acid	Q	Ž	Ä	۲	Q	ջ	Ł	¥	Q	Q	잁	ᄝ	Q N	Q N	Q N	Q
Napthalene	7	Ä	Z	K	Q	ᄝ	۲	K	ջ	Q	Ձ	오	Q	ᄝ	Q	Q
Phenanthrene	Q	Z	Ę	Ľ	Q.	ᄝ	Z	۲	Q	Q	2	ջ	Q	<u>Q</u>	QN	Q
Phenoi	5	L Z	Ę	۲	ND	ᄝ	ĸ	Ę	Q Q	Q	2	2	Q	<u>م</u>	Q	Q
Triethyleste phosphoric Acid	Q	Z	Z	¥	Q	9	¥	Z	읒	Q	윤	2	Q	ᄝ	Q	Q
Triethylphosphate	Q	N L	F	Ä	Q	9	Ę	Ę	Q	Q	2	Q Q	□		QN	Q

ND=Sample Below Detection Limit NT=Not Sampled

SW00296 Lead GAC Effluent

Sampling History at OU7 Location SW00296 Landfill Treatment Lead GAC Effluent

Location SW00296 Landfill Treatment Lead GAC Effluent	d GAC ETINE	Ĭ,										10,00	40/46/07	11/10/97	12/8/97	1/15/98
	96/66/9	7/16/96	9/13/96	10/30/96	11/20/96	1/20/97	2/19/97	4/23/97	6/16/97	8/13/97	9/8/97	10/8/9/	2 99	5	6.8	7.7
Volatile Organics	FN	FZ	5	9	5	5.5	ç	4	Z !	ב צ	7 7	† <u>C</u>	2	Q Z	2.2	QN.
1,1-Dichloroethane	. t	Ę	S	Q	2	ջ	Q	Q Z	Ż	2	2 !	2 2	2 2	2	0.48	CZ
1,2,4-Trimethylbenzene	<u> </u>	- H	2	Ş	2	2	S	2	¥	Ω	ON I	2	2 5	2 4	9 0	2
1,2-Dichlorobenzene	ž	ž	5	9	9	Ş	Š	Q	Ż	S	2	Q N	2	2	0. 1	2 4
1 4-Dichlorobenzene	z	Ż	2	2	2 :	2 2	2	Ş	ž	Q	2	Q	Q	<u>Q</u>	Q	Ž
2-Butanone	Ż	Z	Q	4	2 5	<u> </u>	2 5	2	Ż	C	Q	Q	6.25	Q	2	2
	Ł	Z	2	co.	ž	0	2 5	2 2	: <u>}</u>	Ş	Z	0.59	Q	Q.	1,9	1.1
	Z	ź	Ω	2	0.8	0.24	2	2 9	<u> </u>	2 2	2	S	Q	Q	2	2
	Ż	Ż	2	2	2	0.2	2	2	<u>.</u> !	ġ:	2 0	9 9	S	17	18	19
Carbon disuride	: <u>}</u>	Ę	22	25	21	24	တ	36	Z	4	0 1	2 4	2	33	S	CN
Chloroethane	2 !	: t	1 5	S	9	2	2	2	Z	<u>Q</u>	ON.	Z :	2 2	3 4	, u	86.0
Chloroflouromethane	z	ž !	2 5	2 2	2	2	Ç	2	Ż	Q	2	<u>Q</u>	<u>Q</u>	2	α ! Ο	9 6
cis 1 2-Dichloroethene	Ę	Ę	2	2	2 5	2 2	2	2	Z	2	6.5	2	g	7.8	4.49	6.3
Cichlocoficomethane	¥	Z	2	2	2	2 5	2 5	2 2	Ę	S	Q	9	Q	Q		3.7
	ž	Ę	2	2	ო	0.69	2	2 5	<u> </u>	2 2	2	S	Q	2	1.2	0.32
Ethylbenzene	<u> </u>	12	Š	Q	2	2	2	2	Z	2	2 !	2 4	9	2	38	Ç
(sopropylbenzene	Z	2 !	2 2	! -	,	-	2	2	ż	2	2	2	D .	2 !	9 6	
Methylene Chloride	Ż	Z	2	- !	3 2	2	2	S	Z	Q	2	9	9	Q Z	0.71	Š
POSCON PROTECTION	Z	z	2	2	2	2 !	2 2	2 2	<u> </u>	S	4.	-	2	2	36	
11-10-9-10-11-11-11-11-11-11-11-11-11-11-11-11-	Z	Z	2	Q	2	2	2 !	2 2	<u> </u>	2 2	2	0.23	9	2	1,5	0.58
Napriniarena	Z	Z	2	2	2	Q Z	2	2 :	<u> </u>	2 2	2 2	2	Q	Q	0.87	0.43
loluene	Ę	Z	Q	2	2	2	2	o Z	ź!	2 5	2 2	,	80	S	2	ღ
Trichloroethene	: !	Ė	"	e.	7	3.2	7	က	Z	2	2	7.7	2 2	2	2.7	0.76
Vinyl Chloride	ž!	- ! Z :	2	, (Ş	CZ	Q	Q	Ā	Q	Q	1.2	QN	2	7.0	2
Xylene (Total)	Ē	ž	Ş	4	2	2										
										9	1000	70/8/01	10/15/97	11/10/97	12/8/97	1/15/98
	90,000	3/16/06	9/13/9R	10/30/96	11/20/96	1/20/97	2/19/97	4/23/97	6/16/97	8/13/8/	18/0/8	1000		OV	CZ	S
SemiVolatiles	2/29/90	2017		CN	Z	QV	2	Q	ž	2	Q N	2	2 !	n (2 6	2
1.8 Naphtalic anhydride	ź	ź	2 !	9 9	1	2	Ş	2	Z	Š	Š	Ω Z	ž	2	7	<u> </u>
2-Methylpaphthalene	F	Z	2	2	ž!	2 2	2 2	2	ž	Q	Q	Q.	2	2	4.1	Q
A Constitution	Z	Ϋ́	2	2	Z	2 :	2 5	2 2	5	2	Q	Ñ	Š	4.2	Q	Q
Acettaptimens	¥	F	OZ	2	Ę	S	2 !	2 5	<u> </u>	2 2	Ę	S	2	2	3.7	2
Alpha, alpha cyclollexallering	Ż	Ž	2	2	Ż	2	2	2	<u>.</u> !	2 2	2 2	0	Ş	CZ	Q	Q
bis(2-Ethyinexy)Prinalate	<u> </u>	Ę	S	8	ź	2	2	Q N	ž	2	2 5	9 2	2	Ş	67	Q
Butyi glycolate		5	2	S	¥	Q	2	Q	Ż	Q N	2 !	2 !	2 5	2 2	φ	C
Fluorene	ž!	ž	9 9	Ş	Ę	Q	2	Š	Ż	Ω N	Q N	Q !	2 !	2 5	2 2	2
Napthalene	z !	z ł	2 2	2 5	Ę	2	2	2	ž	2	Q Z	5:4	2 :	2 2	2 2	2 2
Phenanthrene	Z	Z !	2 5	2 5	2 5	Ş	Q	ΩN	Ę	Q	Q	5.8	o Z	S i	2 4	2 2
Triethyl esterphosphoric acid	z	Ż	2	2 !	2 5	2 2	Ş	CZ	Z	Q	Q	Q	2	4.7	O.	2 1
Triethylphosphate	Z	Z	2	2 :	z t	<u> </u>	2 2	2	Þ	2	2	6.2	Q	S	2	2.5

ND=Sample Below Detection Limit

Di-n-butyl phthalate Triethylphosphate

9999999999999

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

255555555555

NT=Not Sampled

Sampling History at OU7 Location SW098 Landfill Pond

Volatile Organics	5/29/96	7/16/96	9/13/96	10/30/96	1/20/97	2/19/97	4/23/97	6/16/97		2/8/8	10/8/97	10/15/97	11/10/97	12/8/97	1/15/98
1,2-Dichloropropane	F	k	N	F	F	Ä	K	ΙN	2	9	<u>N</u>	Q	0.48	9	9
Acetone	Z	ĸ	Ä	۲	۲	۲	¥	۲		9	2	2	3.9	4	QN QN
Methylene Chloride	Z	۲	K	N	Ż	Ϋ́	Z	۲		윉	Q	2	QN		QN
Napththalene	Ä	Z	TN TN TN TN TN TN TN	Z	F.	Ä	F	Ν		Q	1.5	Q	1.5	Q	Q
SemiVolatiles	5/29/96	7/16/96	5/29/96 7/16/96 9/13/96 10/3	10/30/96	1/20/97	2/19/97	4/23/97	130/96 1/20/97 2/19/97 4/23/97 6/16/97 8	8/13/97	26/8/6	10/8/97	10/15/97	11/10/97	12/8/97	
bis(2-Ethylhexy)Phthalate	LN.	TN TN TN	Z	F	Z	¥	Þ	Z	Q	QN	QN	S	1.1	4	9

ND=Sample Below Detection Limit NT=Not Sampled

Appendix 2

Seep Data from the Modified Proposed Action Memorandum Passive Seep Interception and Treatment Operable Unit 7, March 1996

 			1
		Units	
		ARAR/TBC	
		Mean Result	
Validation	for Maximum	Detection	
Qualifier for	Maximum	Detection	
	Maximum	Cataction	
	Minimum	20000	110001
	Limit Detection	7000	יופאמפווי
	Detection Limit	00000	Aalige
			Analyte

16/6 20			The state of the s							
0.05-60 4/16 14 60.4 BLANK A 20 300 0.7-10 8/16 1.4 3 B BIANK 3 5 0.02-50000 19/19 297 1550 BLANK BLANK 645 1000 0.02-5 2/18 0.2 1.4 BLANK BLANK 3 60 2.4-27 7/18 2.7 19.1 BLANK BLANK 11 4 0.02-50 10/18 2.7 19.1 B BLANK 11 50 0.02-60 14/18 1.5 19.1 BLANK 12 1VS (6.46) 0.8-2000 14/18 1.5 14 BLANK V 5 1VS (6.46) 0.8-2000 15/19 34 107 BLANK V 8 50 0.2-200 15/19 34 107 BLANK V 12 10 0.02-40 5/18 2/18 BLANK V <t< td=""><td>THE RESERVE OF THE PARTY OF THE</td><td>ANDOODE TO LESS</td><td>###16/19###</td><td>7.</td><td>35,70,0</td><td>SINE SE</td><td>ELECTIVIES.</td><td>2020</td><td></td><td>ALC: UNITED IN</td></t<>	THE RESERVE OF THE PARTY OF THE	ANDOODE TO LESS	###16/19###	7.	35,70,0	SINE SE	ELECTIVIES.	2020		ALC: UNITED IN
0.7 - 10 8/16 1.4 3 B BLANK BLANK 645 1000 0.02 - 50000 19/19 297 1550 BLANK BLANK 645 1000 0.02 - 50000 19/18 29 14 BLANK BLANK 645 1000 0.02 - 50 7/18 2 29.6 BLANK BLANK 1 50 0.02 - 50 10/18 2 29.9 BLANK BLANK 1 50 0.02 - 50 10/18 2 29.9 BLANK BLANK 1 50 0.8 - 2000 14/18 1.5 11 BLANK V 5 7VS (846) 0.8 - 2000 14/18 1.5 11 BLANK V 5 7VS (846) 0.8 - 2000 15/19 34 107 BLANK V 48 2500 1.2 - 2000 15/19 34 107 BLANK V 48 250 1.1 - 5 2/18 6<		0.05 - 60	4/18	14	60.4	BLANK	٧	20	300	μG/L
0.02 - 50000 19/19 297 1550 BLANK BLANK BLANK 14 4 0.2 - 5 2/18 0.2 1.4 BLANK BLANK 9 50 2.4 - 27.5 7/18 2 28.6 BLANK BLANK 9 50 0.02 - 50 10/18 2.7 18.1 B BLANK 11 50 0.02 - 50 10/18 2.7 18.1 B BLANK 17 50 0.02 - 50 10/18 2.7 19.1 BLANK V 5 70 0.02 - 50 10/18 2.7 19.1 BLANK V 48 250 2.4 - 25 8/18 6.5600 BLANK V 48 2500 2.2 - 2000 15/19 34 107 BLANK V 48 2500 0.02 - 0.2 1/18 0.1 0.28 BLANK V 48 250 0.02 - 0.2 1/18 4 28		07-10	8/16	1.4	3	8	BLANK	3	2	T/S/T
0.2 - 5 2/18 0.2 1.4 BLANK BLANK BLANK 3 TOX-1050 2.4 - 27.5 7/18 2 2.9.6 BLANK BLANK 9 50 2.4 - 27.5 7/18 2.7 19.1 B BLANK 9 50 0.02 - 50 10/18 2.7 19.1 B BLANK 17 50 0.02 - 50 10/18 2.7 19.1 B BLANK 17 15(46) 0.8 - 2000 14/18 2.7 19.1 B BLANK 1/2 1/2(46) 0.8 - 2000 14/18 2.5 94.9 BLANK V 5 1/3(46) 0.8 - 2000 14/18 1.5 11 BLANK V 48 2500 0.02 - 0.2 1/18 3.4 107 BLANK V 48 2500 0.02 - 0.2 1/18 0.1 0.28 BLANK V 12 17 1.1 - 5 2/18		0 02 - 50000	19/19	297	1550	BLANK	BLANK	645	1000	mG/L
2.4 - 27.5 7/18 2 29.6 BLANK BLANK 9 50 50 50 50 50 50 50		02.5	2/18	0.2	4.1	BLANK	٧٢	1	4	μG/L
2.4 - 27.5 7/18 2 29.6 BLANK BLANK 11 50 0.02 - 50 10/18 2.7 19.1 B BLANK 11 50 2.4 - 25 8/18 2.7 19.1 B BLANK 12 TVS (16) 0.8 - 2000 14/18 1.5 11 BLANK V 850 TVS (16) 2 - 2000 15/19 34 107 BLANK V 48 2500 2 - 2000 15/19 34 107 BLANK V 48 2500 2 - 2000 15/19 34 0.7 BLANK BLANK 10 10 0.02 - 0.2 16/18 4 28.5 B BLANK 0.1 12 12 0.02 - 40 5/18 5 31 BLANK 9 17 12 1.1 - 5 2/18 1.1 7 W BLANK 9 5 5 1.1.5 2/16 1	S. SERVICE CONTROL OF THE PROPERTY OF THE PROP	WANT OF SHIPE	224 4118 BRIES			BENNY BENNY	BEST BLEST KAND	Bar 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		METAL
0.02 - 50 10/18 2.7 19.1 B BLANK 11 50 2.4 - 25 8/18 2 94.9 BLANK 12 TVS (16) 0.8 - 2000 14/18 1.5 11 BLANK V 5 TVS (6.46) 2 - 2000 15/19 34 107 BLANK V 48 2500 1 - 2 - 2000 15/19 34 107 BLANK V 48 2500 1 - 2 - 2000 15/19 34 107 BLANK BLANK 6.1 10 0.02 - 0.2 1/18 4 28.5 B BLANK 6.1 10 0.02 - 40 6/18 4 28.5 B BLANK 21 125 1.1 - 5 2/18 1.1 7 W BLANK 2 17 2.6 - 25 8/18 2.7 16.7 BLANK 8LANK 48 8000 3.5 - 10000 12/19 3.1 2.1 <t< td=""><td></td><td>24-275</td><td>7/18</td><td>2</td><td>29.6</td><td>BLANK</td><td>BLANK</td><td>б</td><td>20</td><td>ηGΛ</td></t<>		24-275	7/18	2	29.6	BLANK	BLANK	б	20	ηGΛ
2.4 - 25 8/18 2 94.9 BLANK V 5 TVS (16) 0.8 - 2000 14/18 1.5 11 BLANK V \$5 TVS (646) 0.8 - 2000 15/19 34 107 BLANK V \$31006 TVS (646) 2 - 2000 15/19 34 107 BLANK V \$500 0.02 - 0.2 1/18 0.1 0.28 BLANK BLANK 0.1 10 5.7 - 200 6/18 4 28.5 B BLANK 0.1 10 5.7 - 200 6/18 4 28.5 B BLANK 0.1 10 1.1 - 5 2/18 1.1 7 W BLANK 2 17 2.6 - 25 8/18 2.7 16.7 BLANK 8LANK 920 50 3.5 - 10000 17/19 31 24.3 BLANK 48 80000 3.2 - 10000 12/19 3.1 21 BLANK		0.02 - 50	10/18	2.7	19.1	8	BLANK	11	50	η η
0.8 - 2000 14/18 1.5 41 BLANK V 5 TVS (6.46) 2 - 2000 15/19 34 107 BLANK V 48 2500 2 - 2000 15/19 34 107 BLANK V 48 2500 0.02 - 0.2 1/18 0.1 0.28 BLANK 0.1 10 5 - 200 6/18 0.1 0.28 BLANK 21 10 5 - 200 6/18 4 28.5 B BLANK 21 125 0.02 - 0.2 6/18 5 31 BLANK 21 125 1.1 - 5 2/18 1.1 7 W BLANK 5 50 2.6 - 25 8/18 2.7 16.7 BLANK 8BLANK 5 50 3.5 - 10000 17/19 814 1370 BLANK 8BLANK 48 80000 3.2 - 10000 12/19 3.1 21 BLANK 8BLANK		2.4-25	8/18	2	94.9	BLANK	BLANK	12	TVS (16)	mG/L
2-2000 15/19 34 107 BLANK V 48 2500		0.8 - 2000	14/18	1.5	11	BLANK	>	5	TVS (6.46)	πG/L
2 - 2000 15/19 34 107 BLANK V 48 2500 0.02 - 0.2 1/18 0.1 0.28 BLANK BLANK 0.1 10 0.02 - 0.2 1/18 0.1 0.28 BLANK 0.1 10 5.7 - 200 6/18 4 28.5 B BLANK 21 12 0.02 - 40 5/18 5 31 BLANK V 12 125 1.1 - 5 2/18 1.1 7 W BLANK 2 17 2.6 - 25 8/18 2.7 16.7 BLANK 920 50 3.5 - 10000 8/18 11 243 BLANK 48 8000 3.2 - 10000 12/19 3.1 2.1 BLANK BLANK 25 100	CONTRACTOR CONTRACTOR CONTRACTOR	WAY 77 243 0.000 WE	### BW B 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	## 6/300	(5)(1)(1)		$\mathcal{N} = \mathcal{N}$	###81005#F		TO LO
Control Cont		2 - 2000	15/19	ક્ષ	107	BLANK	>	48	2500	μGΛ.
0.02 - 0.2 1/16 0.1 0.28 BLANK BLANK 0.1 10 5.7 - 200 6/18 4 28.5 B B BLANK 21 125 0.02 - 40 5/18 5 31 BLANK V 12 125 1.1 - 5 2/18 1.1 7 W BLANK 2 17 2.6 - 25 8/18 2.7 16.7 BLANK BLANK 5 50 3.5 - 10000 17/19 8/4 1370 BLANK BLANK 48 8000 3.2 - 1000 12/19 3.1 243 BLANK BANK 25 100	AUTO CONTRACTOR OF THE PARTY OF	2204182100003588	新疆 6月6日新港	Sept.	6137	SINE E	SINGHE	EFF 1073		
6/18 4 28.5 B BLANK 21 22 5/18 5 31 BLANK V 12 125 2/18 1,1 7 W BLANK 2 17 8/18 2,7 16,7 BLANK BLANK 5 50 17/19 814 1370 BLANK BLANK 48 8000 12/19 3,1 2,1 BLANK BLANK 25 100		0.02-02	1/18	0.1	0.28	BLANK	BLANK	0.1	10	ηGΛ
5/18 5 31 BLANK V 12 125 2/18 1.1 7 W BLANK 2 17 8/18 2.7 16.7 BLANK BLANK 5 50 17/19 814 1370 BLANK BLANK 48 8000 12/19 3.1 211 BLANK BLANK 25 100		57-200	6/18	4	28.5	æ	BLANK	21		пΘЛ
2/18 1.1 7 W BLANK 2 17 8/18 2.7 16.7 BLANK BLANK 5 50 17/19 8/14 1370 BLANK BLANK 920 8000 8/18 11 243 BLANK 48 8000 12/19 3.1 211 BLANK 25 100		0.02 - 40	5/18	2	31	BLANK	>	12	125	บูรู
8/18 2.7 16.7 BLANK BLANK 5 50 17/19 814 1370 BLANK BLANK 920 8000 8/18 11 243 BLANK 48 8000 12/19 3.1 211 BLANK 25 100		11-5	2/18	1.1	7	×	BLANK	2	17	TION TION
17/19 814 1370 BLANK BLANK 920 8/18 11 243 BLANK 48 8000 12/19 3.1 211 BLANK 25 100		26.25	8/18	2.7	16.7	BLANK	BLANK	5	50	HG/L
8/18 11 243 BLANK BLANK 48 8000 12/19 3.1 2.11 BLANK BLANK 25 100		3.5 - 10000	17/19	814	1370	BLANK	BLANK	920		μG/L
12/19 3.1 2.11 BLANK BLANK 25 100		10 - 200	8/18	11	243	BLANK	BLANK	48	8000	η G /L
		3 2 - 10000	12/19	3.1	211	BLANK	BLANK	25	100	mG/L

RADIONUCLIDES									1
AMEDICH IM-241	0-0.013	16/16	-0.000404	0.02121	BLANK	>	. 0.007	30	PC//
CEC: 144-137	0.47 - 1	14/14	-0.21	0.6057	٦	BLANK	0.15	3000	PCi/L
DI LITONII IM-038	0.01-0.01	2/2	-0.000465	0.00222	7	Y	0.00088	30	DCI/L
DI LITONII M. 239	0.003 - 0.003	1/1	600.0	0.009	BLANK	BLANK	600.0	30	pCi/L
DI LITONII IM-239/240	0 - 0.013	18/16	0.001	0.01808	BLANK	٧	0.007	30	PCIA
PANI IM-228	0.03 - 0.03	1/1	0.58	0.58	BLANK	٧	0.58	100	PCI/L
OF DATE OF THE PROPERTY OF THE	0.21-1	6/6	0.86	4.08	BLANK	^	1.35	90	DCi/L
OS WILLIAMONTO	02-059	3/3	0.5442	1.1	BLANK	BLANK	0.7		pCi/L
The state of the s	155 - 450	19/19	185.4	1500	BLANK	٧	393	1000	PCi/L
11DANII 1M-033 -234	0.1-0.6	12/12	-0.0238	4.2	В	. ∢	0.8	200	PCi/L
I IDANII IM-235	0.0.6	12/12	-0.012	0.084	٦	¥	0.03	900	pCi/L
I I I MANITAL 238	0.086 - 0.6	12/12	0.03914	3.76	BLANK	٧	+	909	PCi/L

HG/L

90.0

BLANK

1/3

0.05 - 0.28

PESTICIDES alpha-BHC ηG/L

38

SEMIVOLATILE ORGANICS 2,4-DIMETHYLPHENOL

Analyte	Detection Limit	Detection	Minimum	Maximum Detection	Qualifier for Maximum Detection	Validation for Maximum	Mean Rocall	ARAR/TRC	Unite
	25	יבלקבונה ו	110001	1010000	Consense	Total and the second	Mean Vesen	J	9
2-METHYLNAPHTHALENE	10 - 10	5/5	12	23	BLANK	>	16	2	πG/L
4-METHYLPHENOL	10 - 10	3/5	2	4	,	BLANK	4	2	T/SI
ACENAPHTHENE	10 - 10	5/5	2	9	5	4	8	520	lo I
BIS(2-ETHYLHEXYL)PHTHALATE	10 - 12	1/5	2	2	7	<	2	10	ปฏ
DIBENZOFURAN	10 - 10	5/5	+	7	7	<	-	2	T/O _T
DIETHYL PHTHALATE	10 - 10	4/5	,	င	٦	∢	m	200	rG/L
FLUORENE	10 - 10	5/5	2	၉	7	4	2	10	ηgη T
NAPHTHALENE	10.210		Sec. 142.43	100 May 22 May 1	BESINK SE	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 8 1 5 W		A LIGHT
PHENANTHRENE	10 - 10	5/5	4	5	ſ	٧	4	10_	ηG/L
VOLATILE ORGANICS									
1.1-DICHLOROETHANE	5-5	17/20	2	10	BLANK	>	9	59	nG/L
1,2-DICHLOROETHENE	5-5	10/20	2	14	BLANK	>	4	70	T/S/I
2-BUTANONE	10 - 10	6/19	9	92	BLANK	>	12	280	ηG/L
2-HEXANONE	10 - 10	1/20	1	10	BLANK	>	5	50	T/SI
4-METHYL-2-PENTANONE	10 - 10	5/20	10	87	,	∢	11	140	nG/L
ACETONE	10 - 10	10/20	10	220	BLANK	¥	34	280	T/S/I
BENZENE	. 2.5	11/20	16 miles	15 THE R. P. LEWIS CO., LANSING	10 May 13 Ma	* BLANK	2.4	3) KB 1	TIGIT
CARBON DISULFIDE	5-5	1/20	5	9	BLANK	BLANK	£		ηG/L
CHLOROETHANE	10 - 10	15/20	10	57	BLANK	^	22	190	μG/L
CHLOROMETHANE	10 - 10	2/20	4	7	ſ	A	2	2.2	nG/L
ETHYLBENZENE	5-5	19/20	1	18	BLANK	BLANK	13	25	T/SH
METHYLENE CHLORIDE	\$30m.S+S***	9/203		611	8	SENSON CONTRACTOR	Marin P. Lander	#101/2/S#98101	
	5.5	3/4	5	8	BLANK	BLANK	9		μG/L
TETRACHLOROETHENE # # # # # # # # # # # # # # # # # #	例如数据30;90;0;70	Mar 2/204	T. P.			I SINK I			1191
	5-5	19/20	5	88	BLANK	BLANK	38	1000	μG/L
TOTAL XYLENES	5-5	19/20	1	25	ſ	A	14	10000	ηG/L
TRICHLOROETHENE	5-5	11/20	1	4	7	BLANK	2	2.7	T/S/I
VINYI&AGETATEM WAS A STANKING AND A	了一种的。 10年10年20年20年3		(0))			SINE IS			STATE OF THE STATE OF

VATER QUALITY PARAMETERS									
SICARBONATE AS CACO3	1000 - 10000	15/15	554000	705000	BLANK	۸	595800		μG/L
ARBONATE AS CACO3	1000 - 10000	2/9	0	0	BLANK	BLANK	3889		μG/L
	100.0 - 50000	14/14	1800	66300	BLANK	>	53650		nG/L
	10 - 20	1/14	1.5	36.8	BLANK	BLANK	6	200	™G/L
ISSOLVED ORGANIC CARBON	1000 - 1000	4/4	14000	27000	BLANK	٩٢	18750		nG/L
	100.0 - 200.0	12/12	390.0	540.0	BLANK	^	469.2	2000	nG/L
ITRATE/NITRITE	20.00 - 200.0	6/10	20.00	870.0	BLANK	۸	263	10000	™G/L
	20.00 - 20.00	6/9	20.00	63.00	BLANK	>	30.33	200	nG/L
OIL AND GREASE	200.0 - 11100.0	4/12	800.0	42100	BLANK	۸	7013		ηG/L
DRTHOPHOSPHATE	10.00 - 200.0	3/10	20.00	150.0	BLANK	BLANK	6.09		μG/L
		2/5	6.8	7.3	BLANK	BLANK	7		H

Analyte	Detection Limit Range	Detection Frequency	Minimum Result	Maximum Detection	Qualifier for Maximum Detection	Validation for Maximum Detection	Mean Result ARAR/TBC	ARAR/TBC	Units
				,					
PHOSPHORUS	50.00 - 1000	6/6	95.00	1380	BLANK	BLANK	387		HG/L
SILICA	400.0 - 2000	3/3	7400	43000	BLANK	BLANK	19567		1/S ₁
SILICON	7.3 - 2000	13/13	7060	44000	BLANK	BLANK	13547		μG/L
SOLIDS, NONVOLATILE SUSPENDE	5000 - 5000	9/9	10000	199000	BLANK	BLANK	83167		μG/L
SULFATE	200.0 - 25000	5/14	200.0	29600	BLANK	^	5084	250000	ηG/L
TOTAL DISSOLVED SOLIDS	10000 - 10000	15/15	470000	870000	BLANK	BLANK	729333		nG/L
TOTAL ORGANIC CARBON	1000 - 1000	3/3	19000	24500	BLANK	^	20833		μG/L
TOTAL SUSPENDED SOLIDS	4000 - 5000	12/12	10000	250000	BLANK	BLANK	144667		ηG/L

Shaded analytes indicate mean result exceeds ARAR.

All analytes are total analytes unless otherwise noted.

Analytes with zero detections are not reported.

For non-detects, one-half the detection limit is used in calculating the mean result.

¹ Total recoverable concentration reported

2 Not listed in 40 CFR 302.4 or 6 CCR 1007-3, Part 261 - Appendix VII and therefore are not required to be addressed under a CERCLA Remedial Action.

For tetrachloroethene, the maximum detection equals the ARAR; the mean exceeds the ARAR because one-half detection limit

for vinyl acetate, one detection out of nineteen causes mean to exceed ARAR; suggests that one detection is outlier and should be discarded. for non-detects exceeds the ARAR.

Data Qualifiers BLANK = data qualifier field in database is blank.

B = for inorganics, reported value is < CRDL but > IDL (estimated value).

B = for organics, analyte is also detected in blank;

for common lab contaminants include as detection if blank result > 10 times detection limit; for all other organics include if blank result > 5 times detection limit.

B = for radionuclides, constituent also detected in blank whose concentration was > minimum detectable activity. 1 = organics, interference with target peak (estimated value)

J ≈ for organics, MS data indicate presence of compound but below detection limit (estimated value).

U = for inorganics and organics, analyte analyzed but not detected at the quantitation limit.

Data Validation Codes

BLANK = data validation field in database is blank.

A = acceptable result.

JA = acceptable result (for estimated value).

TVS = table value standard, hardness dependent, 5 CCR 1002-8

Appendix 3

Landfill Pond Data from the *Draft Phase 1 IM/IRA Decision Document and Closure Plan for Operable Unit 7, Present Landfill, March 1996*

Table 2-3
Analytes Detected in Surface Water in the East Landfill Pond (SW098)

	*		(2000)	1		Validation for		Bulley ground		
Analyte	Detection Limit Range	Detection Frequency	Result	Maximum Detection	Defection	Maximum Derection	Mean	Sone-infration	Units	PCOC
Metals										
Aluminum	20 - 200	10/15	30	190	1	>	56	39,000	μg/L	
Arsenic	0.7 - 10	5/14	6.0	2.2	***	>	-	3,500	µg/L	
Barium	1.3 - 200	15/15	16	250	1	>	170	64,000	µg/L	2
Beryllium	0.5 - 5	1/15	0.5	0.7	1	Αľ	-	1,700	µg/L	
Cadmium	2.4 - 5	1/15	1	2.1	-	Αſ	2	1,800	µg/L	
Calcium	14.3 - 5,000	15/15	3,200	55,000	1	۸	39,000	57,000	μg/L	2,3
Cesium	100 - 1,000	1/16	33	50	l	>	180	480,000	нд/Г	
Chromlum	2.4 - 10	1/15	2	3.2	1	Αſ	3	3,300	µg/L	
Copper	2.1 - 25	4/15	2	16	1	Αſ	4	8,300	л 9 /L	
Iron	4.3 - 100	15/15	16	1,200	ı	>	490	17,000	μg/L	
Lead	0.8-3	5/14	6.0	5.3		٩٢	2	1,500	µ9/L	
Lithium	2 - 100	14/14	7.7	110	-	1	77	36,000	µg/L	2
Magnesium	30 - 5,000	15/15	4,300	45,800	1	>	37,000	1,200,000	HØV.	2,3
Manganese	1 - 15	14/15	2.5	430		>	100	3,000	η⁄βη.	2
Mercury	0.2	2/15	0.2	0.54	1	>	0.1	59	да∕1	
Molybdenum	5.7 - 200	1/14	3	13	60	-	9	33,000	µg/L	2
Zickel	3.9 - 40	8/15	6.3	17	days.	>	80	13,000	μg/L	2
Potassium	95 - 5,000	15/15	1,400	11,000	1	۸	8,400	1,600,000	µg√L	2,3
Silver	2.5 - 10	1/15	2	2.9	ı	>	2	3,000	μg/L	
Sodium	21 - 5,000	15/15	20,000	190,000	I.	٨	160,000	39,000	μgΛ	1,2,3
Strontium	2.3 - 200	14/14	45	900	-	>	460	240,000	μg/L	2
Thallium	1.2 - 10	1/14	-	7.4	1	Αľ	-	6,500	μg/L	
Tin	10 - 200	3/14	10	26	æ	****	12	34,000	μg/L	
Vanadium	2 - 50	1/15	2	5.6	83	1	2	17,000	µg/L	

March 1006 2 21

Table 2-3
Analytes Detected in Surface Water in the East Landfill Pond (SW098)

Analyte	Detection Limit Range	Detection Frequency	Minimum Result	Maximum Detection	Qualifier for Maximum Detection	Validation for Maximum Detaction	Means	Background *UTLESS Concentration	spin.	PGOG
Zinc	1.8 - 20	12/15	. 4	26	Ļ	۸	10	3,700	т9/1	
Radionuclides										
Americium-241	0 - 0.19	11/11	0.00057	0.031	ם	A	0.007	0.03	T/IOd	-
Cesium-137	0.58 - 1.2	9/9	-0.17	-0.044	ſ	٧	-0.11	2.1	PCI/L	
Gross alpha	2 - 8.7	6/8	-0.87	. 5	. h	۸	ŀ	67	7/IQG	2.6
Gross bela	2.6 - 8.8	8/8	7.9	16	1	۸.	11	31	bch	
Plutonium-239	0.14 - 0.03	3/3	0	0.005	כ	A	0.002		DCi/L	
Plutonium-239/240	0 - 0.01	6/6	-0.00036	0.023	-	A	0.004	0.03	pCi/L	
Radium-226	0.21	1/1	0.23	0.23	***	^	0.23	17	PCI/L	`
Strontium-89/90	0.23 - 1	5/5	99'0	1.9	1	∢	1.4	4.9	PCI/L	2
Strontium-90	0.36 - 0.58	5/5	0.7084	1.208	Ī	>	1.02		pCI/L	
Tritlum	160 - 460	13/13	86	260	r	>	160	730	PCI/L	2
Uranium-233/234	0 - 0.23	5/5	0.76	1.6	1	4	1,1	2.2	PCI/L	2
Uranium-235	0 - 0.26	5/5	0.036	0.3		∢	0.2	0.3	PCI/L	1,2
Uranium-238	0.094 - 0.263	5/5	0.70	2	1	¥	1.2	1.8	PCI/L	1,2
Semivolatile Organic Compounds										
Bis(2-ethylhexyl)phthalate	9 - 11	1/7	7-	1	7	∢	5	8	µg/L	4
Di-n-butyl phthalate	9 - 11	1/7	-	-	r	∢	5		µ9/L	4
Volatile Organic Compounds										
Methylene chloride	5	2/15	4	8	83	-	က	21	µg/L	4
Indicator Parameters										
Bicarbonate as CaCO ₃	1,000 - 10,000	14/14	213,000	489,000	1	>	390,000	1	hg/L	
Carbonate	10,000	1/4	10,000	15,300		>	7,600	-	μg/L	
Carbonate as CaCO ₃	1,000 - 10,000	7/10	10,000	77,000	***************************************	>	33,000	Ī	μg/L	
Chloride	200 - 25,000	14/14	140,000	180,000		1	160,000	64,000	µg/L	1,2
Dissolved organic carbon	1,000 - 2,000	9/9	22,000	32;000	1	>	27,000	l	μg/L	

Analytes Detected in Surface Water in the East Landfill Pond (SW098) Table 2-3

Analyte	Detection Limit Range	Defection Fraquency	Minimum Résult	Maximum Defection	Cualifiar for Maximum Detection	Validation for Maximum Detaction	MOLE		37341	ગુર્વેશન
Fluoride	100 - 200	13/13	590	890		l	770	1	тол	
Nitrate	100	1/3	100	200	1	ΑĽ	100	ı	твлг	
Nitrate/nitrite	20 - 100	6/11	40	320	1	Αſ	93	3,100	ηδη	
Oil and grease	200 - 7,100	1/10	500	200	-	1	2,500	-	тви	
Опнорнозрнате	10 - 50	1/10	40	40	1		27	1	тви	
Ha	1	4/4	8,2	8.3	-	Į.	8.2	_	H	
Phosphorus	90	2/9	50	76	1	>	35	l	тдуг	
Silica	400	1/1	3,100	3,100	1	ĺ	3,100	-	п9Л.	
Silicon	7.3 - 100	13/13	300	3,700	1	>	2,300	16,000	пдЛ	
Solids, nonvolatile suspended	5,000	2/8	5,000	12,000	Į	>	5,000	****	µ9/L	
Sulfate	500 - 10,000	14/14	7,000	28,000	-	>	16,000	41,000	нал	
Total dissolved solids	10,000	14/14	670,000	810,000	1	>	730,000		μg/L	
Total organic carbon	1,000 - 2,000	9/9	26,000	51,000		_	34,000		тв√	
Total suspended solids	4,000 - 5,000	1/9	4,000	12,000	1	-	3,500		пд√г	

Notes

All analytes are total analytes unless otherwise noted. For non-detects, one-half the detection limit is used in calculating the mean result.

Analyte determined to be PCOC by hot measurement test.

Analyte determined to be PCOC by inferential statistics (set(s)).

Analyte determined to be PCOC by inferential statistics (set(s)).

All detected considered a PCOC because it is a nutrient or is not considered by professional judgment.

Analyte not considered a PCOC because of infrequent detection and/or detection in blanks or background samples.

Analyte not considered a PCOC because it into a measure of a single contaminant.

Analyte removed from consideration as PCOC.

data qualifier or validation field in database is blank.

for inorganics, reported value is CRDL but > IDL (estimated value).

for organics, analyte is also detected in blank for common lab contaminants include as detection if blank result > 10 times detection limit; for all other organics include if blank result > 5 times detection limit; for all other organics include if blank result > 5 times detection limit.

for inorganics, value > IDL but control sample analysis not within control limit (estimated value).

for organics, data indicate presence of compound but below detection limit (estimated value).

for inorganics and organics, analyte analyzed but not detected at the quantitation limit. data qualifier field in database is blank. acceptable result.
acceptable result (for estimated value). data qualifier or vi B for forganics, repol B for organics, repol blank result > 10 ti for forganics, value for organics, data it O for inorganics and of data q

contract-required detection limit instrument detection limit instrument detection limit optential contaminant of concern upper tolerance limit of the 99th percentile at the 99-percent confidence level upper tolerance limit of the 99th percentile at the 199-percent confidence level CRDL IDL PCOC UTL

Data Qualifiers

Appendix 4

Seep/spring Water Background Concentrations for Metals from the Background Geochemical Characterization Report, September 1993

BACKGROUND GEOCHEMICAL CHARACTERIZATION REPORT

ROCKY FLATS PLANT GOLDEN, COLORADO

September 30, 1993

Prepared for:
U.S. Department of Energy
Rocky Flats Plant
Golden, Colorado 80401

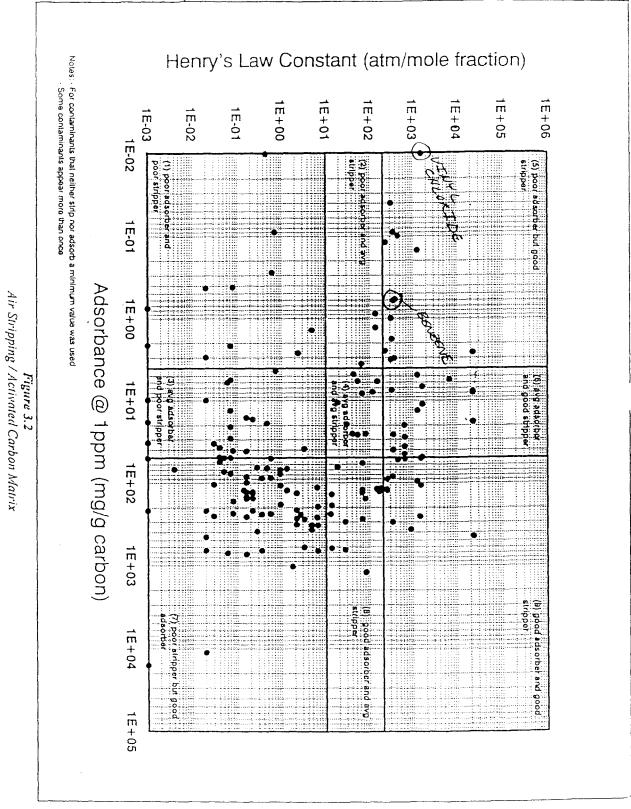

Prepared by: EG&G Rocky Flats, Inc. P.O. Box 464 Golden, Colorado 80402

Table C-23. Seep/spring water UTLs for total metals.

UPPER TOLERA SEEP/SPRING WATE		•	E-WIDE)		ĝ.	
ANALYTE	SAMPLE SIZE, N	PERCENT DETECTS	MEAN	STANDARD DEVIATION	99/99 UTL	UNITS
A	7	80.00	40 445 40	47.140.04	166,871.02	UG/L
ALUMINUM	48	83.33	18,115.18	47,149.24	•	UG/L
ANTIMONY	34	32.35	46.68	108.89	411.91	
ARSENIC	44	59.09	69.77	192.06	675.73	NG/F
BARIUM	44	75.00	913.39	1,692.11	6,252.00	UG/L
BERYLLIUM	38	34.21	2.81	3.37	13.86	UG/L
CADMIUM	33	30.30	9.08	17.25	67.29	UG/L
CALCIUM	53	90.57	94,329.72	128,636.27	500,177.15	UG/L
CESIUM	33	24.24	419.98	449.37	1,936.79	UG/L
CHROMIUM	40	40.00	23.69	49.27	183.74	UG/L
COBALT	35	34.29	43.39	90.97	346.73	UG/L
COPPER	44	52.27	43.89	99.94	359.20	UG/L
CYANIDE	5	40.00	5.95	7.48	72.83	UG/L
IRON	51	88.24	175,074.71	518,671.63	1,811,483.71	UG/L
LEAD	45	66.67	91.14	207.26	745.05	UG/L
LITHIUM	35	48.57	29.43	26.57	118.02	UG/L
MAGNESIUM	50	80.00	10,370.60	7,644.36	34,488.56	UG/L
MANGANESE	51	80.39	1,798.04	5,027.04	17,658.34	UG/L
MOLYBDENUM	33	27.27	33.46	39.12	165.51	UG/L
NICKEL	35	37.14	50.68	116.39	438.78	UG/L
POTASSIUM	41	48.78	3,386.23	3,069.81	13,071.50	UG/L
SELENIUM	36	38.89	3.31	3.72	15.64	UG/L
SILICON	11	100.00	8,408.18	3,027.84	23,029.71	UG/L
SILVER	32	31,25	10.05	25.69	97.35	UG/L
SODIUM	53	88.68	12,005.80	5,016.89	27,834.09	UG/L
STRONTIUM	42	61.90	506.16	476.35	2,009.06	UG/L
TIN	35	37,14	94.03	190.89	730.54	UG/L
VANADIUM	41	51.22	117.09	280.76	1,002.88	UG/L
ZINC	50	82.00	195.22	431.42	1,556.36	UG/L

Appendix 5

Treatment Effectiveness

"The UV/Oxidation Italics Handbook," 1994, Solarchem Environmental Systems. SOURCE:

Figure 3.2 - Continued

Triangle Triangle	00.767	012	ATCONG.OF			20.00	The state of the s		2000		DIOTI DEOETRY EVE C
	1	000	AND CHECKIDE	1.	38	3300	NAME OF THE PARTY AND THE PART	1	85.44	3 57	DICHLOROETHANE 1.2
		155 00	LANCHEON CHICAGO, A. 4. 6	1	200	1000	N-NITROSODIMETHY! AMINE (NOMA)	1	326 20	1.78	DICHLOROETHANE 1, 1-
	200	12/00	TRICHCONOFICIACO, S.A. G	1	100	3 3	METHYLTERRUTYLETHER (MTRE)		320 20	7.51	DICHLOROETHANE 1 1.1.
ACCOMPANIES 10000 10000 10000 10000 10000 10000 10000 10000		1	TRICH OROFICACION	1	137 60	1	METHYLENE CHLORIDE	1	117.78	7.88	DICHLOROBROMOMETHANE
ACTION PRIMERS 1400 1330 1000 CONCROTOR 1100 1100 CONCROTOR	2 2	130.10	TRICHICONOPTICACE, A.A.O.	1	2000	1000	THE THOUSE AND A PROPERTY OF THE PROPERTY OF T	1	240 50	12100	DICHLOROBENZENE 1 4
ACTION PRIMITE COUNTY PRIMITE COUNTY		10.50	TRICHLOROPHENOL 3 4 6		200	3 6 6	MERCURY		180 10	1188	DICHLOROBENZENE 1.3
Compariment	0,00	100	TRICHI OROBUENOI 346	1	200	1000	M-CRESOL		163.80	129.00	DICHLOROBENZENE, 1, 2-
Company Comp		3	TRICHI OBOLIONOSI I DBOLLETUNIS		000	100	LINDANIS	1	8	69 30	DIBENZO(3 NANTHRACENE
		61.63	TRICHI OBOSTAVI SINS	١,	0.63	0 28			0.02	220.00	DI-T-BUTYL PHTHALATE
	240	3	TRICHI OROSTHYI FUF	2	8	214	허		0.02	0.43	DI BUTYL PHTHALATE
	44.0	4	TRICHLOROFTHYL FUE	-	1243.00	88.50	HEXACHLOROETHANE	•	2.16	322.00	DOT p.p.
ACEDIAMPRICES 1400 1330 ADMINISTRATION 1400 1410 14		28.85	TRICHLOROFTHYLENE	-	888.89	370.00	HEXACHLOROCYCLOPENTADIENE	•	0.02	9.97	CRESOL, 4-
ACEDIAMPRICES 140 00 1330 ADMINISTRATION 140 00	53	26.20	TRICHLOROETHANE, 1, 1, 2-	-	1422.22	258.00	HEXACHLOROBUTADIENE	9	0.02	2.98	CRESOL.+
ACENIMITEME 100 1130 20 100 100 1130 20 100 1130 20 1130 20 1130 20 1130 20 1130 20 1130 20 20 20 20 20 20 20	53.3	5.81	TRICHLOROETHANE, 1, 1, 2-	-	22890.00	450.00	HEXACHLOROBENZENE	•	0.04	56.00	CRESOL.3-
ACEDIAMPROPERION AUTOMOTOR AUTOMOTOR	226 6	2.48	TRICHLOROETHANE, 1, 1, 1-	5	1.76	1040.00	HEPTACHLOR EPOXIDE	7	0.04	37.50	CRESOL.3-
ACEDIAMPHONE ACEDIAMPHONE	410	25.55	TRICHLOROETHANE	4	82.22	1220.00	HEPTACHLOR		005	73.40	CRESOL 2-
ACCUMATIVEME 1400 1130 5 DOCK DOCKMONUS 1.100 1.10	78.8	157.00	TRICHLOROBENZENE, 1, 2, 4-	8	82.22	25.54	HEPTACHLOR	-	0.08	716.00	CHRYSENE
ACEDIAMPRIENE 1400 1130 6 DOCKOROPRINO, EL 1. 1100 11	353 1	40 20	TOLUENE	٥	6.50	674.00	FLUORENE	-	0.06	6.07	CHRYSENE
	153.1	26 10	TOLUENE	0	6.50	330.00	FLUORENE	1	0.57	240.00	S
	353.1	0.61	TOLUENE	5	0.50	196.00	FLOCRENE	-	0.0/	88.00	CONCORDEROC.
NEWAPHTENE 1400 1130 6 1004000PROVIDE 17700 14000 17700 140000 17700 140000 17700 140000 17700 140000 17700 140000 17700 140000 17700 140000 17700 140000 17700 140000 17700 140000 17700 14000000000000000 17700 17700 14000000000000000 17700 17700 14000000000000000 17700	353.1	0.09	TOLUENE	5	0.38	664.00	FLUCKANTHENE		0 3/	31.50	CULCAOPTENOL.2
CECUMPTICINE CATON CATON CATON CATON CATON CATON CANON CATON CATON	1492 0	108.17	TETRACHLOROETHYLENE		0.36	242.00	FLUORANTHENE		22320.00	18 20	CHECACTORS
CECHAPTICINE COORDINATE CONTROL CONTRO	1492.0	50.80	TETRACHLOROETHYLENE		0.36	88.10	FLUCKANIHENE		00.07577	0.04	CONCORDINA
CENTAPTION CANON	184	10.60	TETRACHLOROETHANE 1, 1, 2, 2	-	446.80	33.00	E HTCGCNCCNC		00.07077	1.00	CHOROFORM
CECHAPTICESE CANON CHANNEL CANON CAN	100	84 98	TETRACHLOROETHANE, 1, 1, 2, 2-	-	446.80	0.10	מיחזרממעלמער		20000	2.00	CHI OBOROBIA
	140	120 00	STYRENE	-	0.45	0.01	EIRWIOL	•	384.40	0.00	CHIOROEUPANE
CENAPTIMER 11000 1339 6 DOMPOLAND 1480/MORE 17000 6 AMPHALERE 17000 1339 6 DOMPOLAND 1480/MORE 17000 1330 6 DOMPOLAND 1330 DOMPOLAND 1330 0 DOMPOLAND 1330 DOMPOLAND 13300 DOMPOLAND 1330 DOMPOLAND 1330	0.	389.00	PYRENE	7	0.02	666.00	ENDRIN	1	43.50	4.80	CHLORODIBROMOME I HAVE
CENAPTRI-ENE 1000 1330 5 DICHLOROFITY-ENE 1,11 0.01 1370 6 DICHLOROFITY-ENE 1,11 0.01 1370 6 DICHLOROFITY-ENE 1,12 0.01 1370 6 DICHLOROFITY-ENE 1,12 0.01 1370 6 DICHLOROFITY-ENE 1,12 0.01 1,12 0.01 1,12 0.01 1,12 0.01	0	65.60	PYRENE	7	0.02	456.50	ENDRIN	7	252.10	125 40	CHLOROBENZENE
CENNATIVE CANON TAINTING	0	67.20	PROPYLPHENOL.+	7	0.00	16000.00	DIPHENYLHYDRAZINE, 1, 2-	7	252 10	93.08	CHLOROBENZENE
CENAPTRIENE 100 1339 5 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 123 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 133 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 133 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 133 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 133 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 133 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 133 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 133 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 137 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 137 0 DICHLOROPETALENE 1,1 4 11 1270 00 8 AMPTHALENE 1,1 4 11 1270 00 1,1 4 11 11 1270 00 1,1 4 11 11 11 11 11 11	0	19 00	PROPYLPHENOL,4	3	0.00	16000.00	DIPHENYLHYDRAZINE 1.2-	7	0.14	124 00	CHLORO-M-CRESOL P
CENNAPTHÈNE 100 1130 5 DICHLOROFINYLENE 1,1 1270 00 6 MAPHYLLENE 1270 00 1330 6 DICHLOROFINYLENE 1,1 1370 00 6 MAPHYLLENE 1270 00 1330 6 DICHLOROFINYLENE 1,1 1370 00 6 MAPHYLLENE 1,2 1300 1330 6 DICHLOROFINYLENE 1,1 1370 00 6 MAPHYLLENE 1,2 1300 1,2	0	5 66	PHENOL PH 11.3	2	0.00	1.73	DIOXANE,1,4	-	2.88	245.00	CHLORDANE
CENNAPTHÈNE 1000 1339 3 DICHLOROEINYLENE 1.1 1270 3 DICHLOROEINYLENE 1.2 1270 3 DICHOROEINYLENE 1.2 1270		78 10	PHENOL	1	0.00	3388	DINITROPHENOL.2,4	3	1634,00	49.03	CARBON TETRACHLORIDE
CENAPTHÈNE 1000 11339 5 DICHLOROPHENE 1.1 2010 20	0	77.40	PHENOL	7	0.00	18.40	DINITROPHENOL, 2, 4-	3	1634.00	11.10	CARBON TETRACHLORIDE
CENNAPTHENE 140 00 1339 5 DICHLOROETHYLENE,1; 20 15 1270 00 8 NAPHTHALENE 120 01 1339 5 DICHLOROETHYLENE,1; 20 15 1270 00 8 NAPHTHALENE 120 01 1339 5 DICHLOROETHYLENE,1; 20 15 1270 00 8 NAPHTHALENE 120 01 120 0		50 00	PHENOL	۵	0.8	9.87	DINITROPHENOL, 2,4-	ú	1634.00	6.80	CARBON TETRACHLORIDE
ACENAPHTNEEE 14000 1339 3 DICHLOROETINLENE 1. 1270 00 4 NAPHTNALENE 12300 12300 12300 32001 12300 32000		49 80	PHENOL	٥	0.08	189.00	DINITRO-O-CRESOL, 4,6-	7	29.56	19.60	BROMOFORM
ACENAPTITIENE 1900 13.39 5 DICHLOROETTMLENE 1.1. 2.15 OI 1.270	0	29.00	PHENOL	٥	0.04	0.42	DINITRO-O-CRESOL, 4,5-	-	0.02	11300.00	BIS(2-ETHYLHEXYL)PHTHALATE
ACENAPTINENE 1900 1339 5 DICHLOROETHYLENE 11- 1270 00 6 NAPTINALENE 1270 00 1230 6 DICHLOROETHYLENE 1- 1270 00 6 NAPTINALENE 1270 00 6 NAPTINALE		21 00	PHENOL	٥	0.08	237.00	DINITRO-O-CRESOL, 4,8-	7	0.72	0.09	BIS(2-CHLOROETHYL)ETHER
ACENAPTINENE 1900 13.39 5 DICHLOROPHENIE, 1:- 0.15 1270 00 6 NAPTINENE 173.00 6 DICHLOROPHENIE, 1:- 0.15 1270 00 6 NAPTINENE 173.00 6 DICHLOROPHENIE, 1:- 0.15 1270 00 6 NAPTINENE 173.00 6 DICHLOROPHENIE, 1:- 0.15 1270 00 6 NAPTINENE 173.00 6 DICHLOROPHENIE, 1:- 0.15 1270 00 6 NAPTINENE 173.00 6 DICHLOROPHENIE, 1:- 0.15 1270 00 6 NAPTINENE 173.00 6 DICHLOROPHENIE, 1:- 0.15 1270 00 6 NAPTINENE 173.00 6 DICHLOROPHENIE, 1:- 0.15 1270 00 6 NAPTINENE 173.00 6 DICHLOROPHENIE, 1:- 0.15 1270 00 6 NAPTINENE 173.00 6 DICHLOROPHENIE, 1:- 0.15 1270 6 NAPTINENE 173.00 7 DICHLOROPHENIE, 1:- 0.15 1270		17.	PHENOL	-	0.08	41.00	DINITRO-O-CRESOL 4.6-	٥	0 03	256.00	BHC gamma-LINDANE
ACENAPTINENE 190 00 13 39 5 DICHLOROPHENOL 2.4 197 00 8 NAPITHALENE 172 00 7 PENTACHICOROPHENOL 2.4 197 00 197 0		3 13	PHR 2	-	0 94	184.8	DIMETHYLPHENOL 2.4	7	0.8	51.00	BENZOIC ACID
ACENAPTITIENE 1900 13.39 5 DICHLOROETHYLENE 1.1	ار.	27.70	PHENAVIHRENE	1	0 94	70.00	DIMETHYLPHENOL, 2,4	1	0.80	0.76	BENZOIC ACID
ACENAPTITIENE 1900 13.39 5 DICHLOROPIENE, 1; - 0.15 1270.00 6 NAPTHALENE 1330 7 DICHLOROPIENE, 1; - 0.15 1270.00 6 NAPTHALENE 1330 7 DICHLOROPIENO, 2, + 0.15 1370.00 6 NAPTHALENE 1330 7 DICHLOROPIENO, 2, + 0.15 1370.00 6 NAPTHALENE 1330 7 DICHLOROPIENO, 2, + 0.15 1370 7 NAPTHALENE 2770 NAPTHALENE	,	215.00	PHENANTHRENE	1	004	108.00	DIMETHYLPHENOL 2.4.	-	0 03	33 60	BENZO(a)PYRENE
ACENAPTIFIENE 19000 1339 5 DICHLOROPHENOL, 2+ 19700 6 NAPTHALENE 17300 17300 6 NAPTHALENE 173000 173000 173000 173000 173000 173000 173000 173000 173000 173000 173000	,	136 37	PHENANTHRENE	1	0	78 00	DIMETHYLPHENOL 2.4	1	309.00	3 18	BENZENE
ACENAPTITIENE 1900 13.39 5 DICHLOROETHYLENE 11. 0.15 1270 00 6 NAPHTALENE 123 00 123 00 6 DICHLOROETHYLENE 1.1. 0.15 1270 00 6 NAPHTALENE 123 00 123 00 6 DICHLOROETHYLENE 1.1. 0.15 1270 00 6 NAPHTALENE 123 00 123 00 6 DICHLOROETHYLENE 1.2. 0.15 1270 00 6 NAPHTALENE 123 00 123 00 6 DICHLOROETHYLENE 1.2. 0.15 1270 00 6 NAPHTALENE 127 00 0.15 0.15		230 00	DENTACH OROBUSTO	1	3	808.00	DIELORIX	1	309.00	8	BENZENE
ACEMAPTHENE 1000 1339 5 DICHLOROFIENCENE 1,1 0.15 1270.00 6 MAPHTHALENE 13200 13200 1339 5 DICHLOROFIENCENE 1,1 0.15 1270.00 6 MAPHTHALENE 13200 13200 1339 5 DICHLOROFIENCENE 1,2 TRANS 370.70 6 MAPHTHALENE 13200 13		360 00	BENTACH DROBLENOI	1	3 24	277.00	DIELDRIN	4	309.00	0.04	BENZENE
ACENAPTITIENE 190 00 13.39 5 DICHLOROPHENOL 2.4 1.00 13.00 6.00 13.00 5.00 13.00 6.00 13.00 13.00 6.00 13.00		15000	PENTACHI DROPHENOI	1	3 24	36 86	DIELDRIN	۵	4.78	376.00	ANTHRACENE
ACENAPTIVENE 1900 13.39 5 DICHLOROPHENALE, 1:- 127.00 6 NAPTIVALENE 127.00 6 NAPTI	,	100 00	PENTACHI OROPHENOI	1	148.60	5.86	DICHLOROPROPANE,1,2-		4.78	330.00	ANTHRACENE
ACEMAPTIMENE 14000 1339 5 DICHLOROUTENE 1,1 1270.00 6 MAPTIMENE 1230.00 Macion	3	24200	PCB 1221		010	157.00	DICHLOROPHENOL, 2,4-	7	27.56	651.00	ALDRIN
CENNAPTHENE 140 00 13.39 5 DICHLOROETHYLENE 1.1 1270 00 8 MAPHTALENE 132 00 13.20 CENNAPTHENE 13.00 13.39 5 DICHLOROETHYLENE 1.2 7 DICHLOROETHYLENE 1.2 T CHANCOETHYLENE 1.2 T CHANC	1,5	85.00	P-XYLENE		0.16	131.00	DICHLOROPHENOL, 2,4-	7	27.56	299.60	ALDRIN
ACENAPTITIENE 1000 1339 5 DICHLOROETHYLENE 1,1) -	50.07	O-CRESOL	1	0.70	41.40	DICHLOROPHENOL, 2.4	u	4.89	1.40	ACRYLONITRILE
ACENAPHTHENE 140.00 13.39 5 DICHLOROETHYLENE 1.1 0.15 1270.00 8 NAPHTHALENE 132.00 6 CENAPHTHENE 120.00 13.39 5 DICHLOROETHYLENE 1.2 0.15 1270.00 8 NAPHTHALENE 132.00 6 CENAPHTHENE 132.00 6 CENAPHTHALENE 132.00 6 CENAPHTHALENE 133.00 6 CENAP		124 69	NITROBENZENE	1	0.16	16.20	DICHLOROPHENOL, 2,4-	3	2.38	2.65	ACETONE
ACEMAPTIMENE 1000 1339 5 DICHLOROMENTALENE 1,7 1,2		28	NITROBENZENE	-	016	85.16	DICHLOROPHENOL, 2,4-	. 7	8.33	266.00	ACENAPHTHYLENE
ACENAPTINENE 1300 1339 5 DICHLOROETHYLENE 1,7:	6	8 18	NAPTHALENE	-	137.60	0.86	DICHLOROMETHANE	2	6.33	115.00	ACENAPHTHYLENE
Cation Cation County Cation Cation County Cation C	200	277 00	NAPHTHALENE	-	370.70	305	DICHLOROETHYLENE, 1, 2-TRANS-	5	13.39	626.00	ACENAPHTHENE
ACENAPHTHENE 140,000 13.39 5 DICHLOROETHYLENE;1,1: 0,15 1270,000 8 NAPHTHALENE 173.00		13000	NAPHTHALENE		1270.00	191	DICHLOROETHYLENE, 1, 1-	a	13.39	190.00	ACENAPHTHENE
(n) trailin) recover Commodition (n) carbon) fracilin) recover Commodition (n) carbon) carbon) fracilin) recover Commodition (n) carbon) carbon) fracilin)	200	127 00	NAPHTHALENE	۵	1270.00	0.15	DICHLOROETHYLENE, 1, 1-	5	13.39	140.00	ACENAPHTHENE
	H (alm/mo			7 60 0	fraction)			_	fraction)	_	

Sources: EPA RREL Treatability Database and Chemical Engineering (November 1-1)

...

ATTACHMENT 2

Revised Present Landfill Passive Seep Interception and Treatment System Design for a Minor Modification to the Proposed Action Memorandum

Background

During discussions between the Colorado Department of Public Health and Environment, the Department of Energy, Kaiser-Hill, Rocky Mountain Remediation Services, and the Environmental Protection Agency, it has been determined that the Granular Activated Carbon (GAC) treatment system currently being utilized at the OU7 Landfill is ineffective for the volatile organic compounds (VOCs) identified in the seep at levels exceeding steam standards-based ARARs. Therefore, an alternative method of passive treatment (aeration) is appropriate. The following proposal outlines this simplified method.

- 1) Discharge line The current bypass line is the preferred discharge line due to several factors. The current bypass line has a conveniently located discharge point which can be freeze protected and has proper elevation. The bypass line will be covered with a minimum of six inches of dirt in order to protect the line from freezing. In contrast, the current configuration would require an extension of the pipe which could not be easily freeze protected because it would extend vertically to achieve the proper elevation.
- 2) Splash pad A large tile of flagstone will be positioned approximately twelve inches below the discharge line to obtain a splashing effect and significant surface contact area. The flagstone will be angled one inch per foot (approximately eight degrees) to ensure the water flows down to additional tiers of flagstone and does not bypass them.
- 3) Flagstone tiers Three (possibly four) tiers of flagstone (splash pad is first tier) will be positioned in a manner that allows flow across the surface (angled at one inch per foot) of each flagstone with the water then spilling over onto the next flagstone. The anticipated drop between tiers of flagstone will be approximately six inches.
- 4) Gravel layer A single layer of two inch thick gravel would be would be placed in the first six feet of the stream flow. The layer of gravel will allow for additional surface contact and serve to slightly agitate the discharge to assist in removing residual VOCs, if any exist.
- 5) Installation The proposed method utilizes readily available and inexpensive materials. The new system could be completed within two weeks of written approval. In addition, material and labor costs are expected to be minimal.
- 6) Decommissioning The current system will be decommissioned by closing valves to the system. The drums of GAC and bag filters will be removed from the current process system within two weeks of the startup of the new system and managed appropriately as remediation waste. The two weeks will be utilized to ensure that no problems exist that would immediately require the restart of the original system. The original process equipment, ie. the bag filter assemblies and piping will be left in place until the new system has been evaluated after one year of use.

ATTACHMENT 3

Revised Present Landfill Passive Seep Interception and Treatment System Operational Framework for a Minor Modification to the Proposed Action Memorandum

Purpose

The Modified Proposed Action Memorandum for Passive Seep Interception and Treatment (the PAM), dated March, 1996, stated that:

"(t)he overall objective of the interception system is to eliminate, to the extent practicable, discharge of F039-listed waste contained in the seep water to a surface-water body."

In addition the PAM requires that:

"(c)ompliance with potential applicable or relevant and appropriate requirements for seep water will be addressed, to the extent necessary, to protect human health and the environment through interception and treatment of the seep to reduce concentrations of volatile and semivolatile organic compounds."

Consistent with that statement of objective, this Operational Framework is intended to summarize operational practices and to improve compliance and auditability. The operational framework will:

- present specific performance objectives (ie. chemical-specific ARARs)
- clarify sampling requirements
- document inspection practices
- document conditions for bypass and associated notification
- address project reporting

Performance Objectives

The original PAM (July, 1995) and Revision 1 (March 1996) contain lists of potential ARARs and TBCs. It is necessary to refine the ARARs so that specific performance objects are identified in a manner that is consistent with RFCA.

The Table 1 presents the performance objectives for the system. The constituents included in the table are those volatile and semivolatile constituents identified in the seep for which RFCA Table 1 Surface Water Action Level & Standards are available for Segment 4a & 4b.

Metals are not being included as part of the performance objectives. This is appropriate for two reasons. First, volatile and semivolatile contaminants are the only leachate constituents treated in the system. Second, metals have extremely high background concentrations in RFETS groundwater. When these reasons are combined, surface water quality standards for metals are not relevant or appropriate as measures of system performance.

Sampling Requirements

Complete detail on sampling requirements is provided in the Passive Seep Interception and Treatment System Sampling and Analysis Plan (PSITS SAP). The PSITS SAP is being prepared and will be submitted for review and approval. The PSITS SAP provides

information on sampling approach; procedures; data quality objectives; data management and evaluation of analytical results.

Samples will be collected in two locations. First, raw water samples will be collected at the influent to the treatment system in the settling tank. Second, the performance of the PSITS will be measured where the leachate exits the six foot gravel bed. Samples for total metals, VOCs, SVOCs and radionuclides will be collected monthly for one year and semi-annually thereafter.

Inspection

Weekly inspections will be conducted during start-up and optimization. A less intensive inspection schedule will be implemented once a competent, steady-state operation can be maintained. Once implemented, specific conditions (ie. storm events) will trigger additional inspection.

TABLE 1
Passive Seep Interception and Treatment System Performance Objectives

Constituent	RFCA Segment 4a & 4b Standards, ug/l
VOLATILES 1,1-Dichloroethane	1000*
1,2-Dichlorobenzene	620
1,4-Dichlorobenzene	75
Benzene	1
Chlorobenzene	100
Chloromethane	5.7
cis-1,2-Dichloroethene	70
Ethylbenzene	680
Methylene Chloride	5.0
Tetrachloroethene	0.8 (PQL=1)
Toluene	1,000
Trichloroethene	2.7
Vinyl Chloride	2
Xylenes (total	10,000
SEMI-VOLATILES 1,4-Dimethylphenol	540
Acenapthene	520
bis(2-ethylhexyl) phthalate	1.8 (PQL=6)
Butyl benzyl phthalate	3,000
Diethyl phthalate	23,000
Di-n-butyl phthalate	2.7 (PQL=10)
Fluorene	1,300
Napthalene	620
Phenanthrene	0.0028 (PQL=10)
Phenol	2,560

^{*}No Segment 4a/4b value available. This is the Segment 5 value.

Bypass

Consistent with the prior verbal agreement, bypass is allowed during periods of high flow from the seep and during maintenance activities. EPA will be verbally notified in instances where bypass continues longer than 72 hours. Other shorter periods of bypass will be included in the quarterly operational report.

Reporting

Operational status and sample data will be documented and incorporated in the Quarterly Report for the Consolidated Water Treatment Facility. In addition, when the results from twelve monthly sampling events are available, the data will be tabulated and submitted in a letter report. Based upon the twelve monthly sampling events, it will be determined whether or not the modified system is attaining ARARs to the maximum extent practicable.